1
|
Giménez-Orenga K, Martín-Martínez E, Oltra E. Over-Representation of Torque Teno Mini Virus 9 in a Subgroup of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. Pathogens 2024; 13:751. [PMID: 39338942 PMCID: PMC11435283 DOI: 10.3390/pathogens13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disorder classified by the WHO as postviral fatigue syndrome (ICD-11 8E49 code). Diagnosing ME/CFS, often overlapping with fibromyalgia (FM), is challenging due to nonspecific symptoms and lack of biomarkers. The etiology of ME/CFS and FM is poorly understood, but evidence suggests viral infections play a critical role. This study employs microarray technology to quantitate viral RNA levels in immune cells from ME/CFS, FM, or co-diagnosed cases, and healthy controls. The results show significant overexpression of the Torque Teno Mini Virus 9 (TTMV9) in a subgroup of ME/CFS patients which correlate with abnormal HERV and immunological profiles. Increased levels of TTMV9 transcripts accurately discriminate this subgroup of ME/CFS patients from the other study groups, showcasing its potential as biomarker for patient stratification and the need for further research into its role in the disease. Validation of the findings seems granted in extended cohorts by continuation studies.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
2
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Murugan B, Krishnan UM. Differently sized drug-loaded mesoporous silica nanoparticles elicit differential gene expression in MCF-7 cancer cells. Nanomedicine (Lond) 2021; 16:1017-1034. [PMID: 33970678 DOI: 10.2217/nnm-2020-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigates the effects of different sized unmodified and chemo-responsive mesoporous silica nanocarriers on MCF-7 cancer cells. Materials & methods: Unmodified and thiol-functionalized large and small-sized mesoporous MCM-41 silica nanoparticles prepared using templated sol-gel process were characterized for their physicochemical properties and in vitro and in vivo anticancer efficacy. Microarray analysis was carried out to assess their differential effect on gene expression. Results: Thiol-functionalized nanoparticles displayed chemo responsive release and greater cytotoxicity to cancer cells when compared with unmodified carriers. Microarray studies showed distinct differences in genes differentially regulated by sMCM-41and lMCM-41 carriers when compared with the free drug. Conclusion: The small chemo-responsive carrier was more effective in suppressing oncogenes and genes involved in proliferation, invasion and survival while the large carrier mainly altered membrane-associated pathways.
Collapse
Affiliation(s)
- Baranya Murugan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur, 613401, India
| |
Collapse
|
4
|
Pisano MP, Grandi N, Tramontano E. Human Endogenous Retroviruses (HERVs) and Mammalian Apparent LTRs Retrotransposons (MaLRs) Are Dynamically Modulated in Different Stages of Immunity. BIOLOGY 2021; 10:biology10050405. [PMID: 34062989 PMCID: PMC8147956 DOI: 10.3390/biology10050405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022]
Abstract
Human Endogenous retroviruses (HERVs) and Mammalian Apparent LTRs Retrotransposons (MaLRs) are remnants of ancient retroviral infections that represent a large fraction of our genome. The HERV and MaLR transcriptional activity is regulated in developmental stages, adult tissues, and pathological conditions. In this work, we used a bioinformatics approach based on RNA-sequencing (RNA-seq) to study the expression and modulation of HERVs and MaLR in a scenario of activation of the immune response. We analyzed transcriptome data from subjects before and after the administration of an inactivated vaccine against the Hantaan orthohantavirus, the causative agent of Korean hemorrhagic fever, to investigate the HERV and MaLR expression and differential expression in response to the administration of the vaccine. Specifically, we described the HERV transcriptome in PBMCs and identified HERV and MaLR loci differentially expressed after the 2nd, 3rd, and 4th inactivated vaccine administrations. We found that the expression of 545 HERV and MaLR elements increased in response to the vaccine and that the activation of several individual HERV and MaLR loci is specific for each vaccine administration and correlated to different genes and immune-related pathways.
Collapse
|
5
|
RNA-Seq Transcriptome Analysis Reveals Long Terminal Repeat Retrotransposon Modulation in Human Peripheral Blood Mononuclear Cells after In Vivo Lipopolysaccharide Injection. J Virol 2020; 94:JVI.00587-20. [PMID: 32669333 DOI: 10.1128/jvi.00587-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Human endogenous retroviruses (HERVs) and mammalian apparent long terminal repeat (LTR) retrotransposons (MaLRs) are retroviral sequences that integrated into germ line cells millions of years ago. Transcripts of these LTR retrotransposons are present in several tissues, and their expression is modulated in pathological conditions, although their function remains often far from being understood. Here, we focused on the HERV/MaLR expression and modulation in a scenario of immune system activation. We used a public data set of human peripheral blood mononuclear cells (PBMCs) RNA-Seq from 15 healthy participants to a clinical trial before and after exposure to lipopolysaccharide (LPS), for which we established an RNA-Seq workflow for the identification of expressed and modulated cellular genes and LTR retrotransposon elements.IMPORTANCE We described the HERV and MaLR transcriptome in PBMCs, finding that about 8.4% of the LTR retrotransposon loci were expressed and identifying the betaretrovirus-like HERVs as those with the highest percentage of expressed loci. We found 4,607 HERV and MaLR loci that were modulated as a result of in vivo stimulation with LPS. The HERV-H group showed the highest number of differentially expressed most intact proviruses. We characterized the HERV and MaLR loci as differentially expressed, checking their genomic context of insertion and observing a general colocalization with genes that are involved and modulated in the immune response, as a consequence of LPS stimulation. The analyses of HERV and MaLR expression and modulation show that these LTR retrotransposons are expressed in PBMCs and regulated in inflammatory settings. The similar regulation of HERVs/MaLRs and genes after LPS stimulation suggests possible interactions of LTR retrotransposons and the immune host response.
Collapse
|
6
|
Pisano MP, Grandi N, Tramontano E. High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses 2020; 12:E633. [PMID: 32545287 PMCID: PMC7354619 DOI: 10.3390/v12060633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Cagliari, Italy
| |
Collapse
|
7
|
Mommert M, Tabone O, Guichard A, Oriol G, Cerrato E, Denizot M, Cheynet V, Pachot A, Lepape A, Monneret G, Venet F, Brengel-Pesce K, Textoris J, Mallet F. Dynamic LTR retrotransposon transcriptome landscape in septic shock patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:96. [PMID: 32188504 PMCID: PMC7081582 DOI: 10.1186/s13054-020-2788-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Numerous studies have explored the complex and dynamic transcriptome modulations observed in sepsis patients, but a large fraction of the transcriptome remains unexplored. This fraction could provide information to better understand sepsis pathophysiology. Multiple levels of interaction between human endogenous retroviruses (HERV) and the immune response have led us to hypothesize that sepsis is associated with HERV transcription and that HERVs may contribute to a signature among septic patients allowing stratification and personalized management. METHODS We used a high-density microarray and RT-qPCR to evaluate the HERV and Mammalian Apparent Long Terminal Repeat retrotransposons (MaLR) transcriptome in a pilot study that included 20 selected septic shock patients, stratified on mHLA-DR expression, with samples collected on day 1 and day 3 after inclusion. We validated the results in an unselected, independent cohort that included 100 septic shock patients on day 3 after inclusion. We compared septic shock patients, according to their immune status, to describe the transcriptional HERV/MaLR and conventional gene expression. For differential expression analyses, moderated t tests were performed and Wilcoxon signed-rank tests were used to analyze RT-qPCR results. RESULTS We showed that 6.9% of the HERV/MaLR repertoire was transcribed in the whole blood, and septic shock was associated with an early modulation of a few thousand of these loci, in comparison to healthy volunteers. We provided evidence that a subset of HERV/MaLR and conventional genes were differentially expressed in septic shock patients, according to their immune status, using monocyte HLA-DR (mHLA-DR) expression as a proxy. A group of 193 differentially expressed HERV/MaLR probesets, tested in an independent septic shock cohort, identified two groups of patients with different immune status and severity features. CONCLUSION We demonstrated that a large, unexplored part of our genome, which codes for HERV/MaLR, may be linked to the host immune response. The identified set of HERV/MaLR probesets should be evaluated on a large scale to assess the relevance of these loci in the stratification of septic shock patients. This may help to address the heterogeneity of these patients.
Collapse
Affiliation(s)
- Marine Mommert
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.
| | - Olivier Tabone
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Audrey Guichard
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Guy Oriol
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Elisabeth Cerrato
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Mélanie Denizot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Valérie Cheynet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Alexandre Pachot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Alain Lepape
- Intensive Care Unit, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,Emerging Pathogens Laboratory, Epidemiology and International Health, International Center for Infectiology Research (CIRI), Lyon, France.,bioMérieux Joint Research Unit, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Immunology Laboratory, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.,Department of Anaesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Université Claude Bernard Lyon 1, Lyon, France
| | - François Mallet
- Joint Research Unit, bioMerieux, Centre Hospitalier Lyon Sud, Hospice Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôspital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | | | | |
Collapse
|
8
|
Bergallo M, Galliano I, Montanari P, Zaniol E, Graziano E, Calvi C, Alliaudi C, Daprà V, Savino F. Modulation of human endogenous retroviruses -H, -W and -K transcription by microbes. Microbes Infect 2020; 22:366-370. [PMID: 32035224 DOI: 10.1016/j.micinf.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022]
Abstract
The human endogenous retroviruses (HERVs) are endogenous retroviruses that are inserted into the germ cell DNA of humans over 30 million years ago. Using real-time RT-PCR we describe HERV modulation by commensal microbes in the human gut. Infants, exclusively or predominant breast milk feeding, less than 12 weeks of age, during bacteria gut colonization, were assessed for eligibility. Our data demonstrate that the colonization with commensal microbes, in particular, Bifidobacterium spp., of the gut causes modulation of HERVs.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Elena Zaniol
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Elisa Graziano
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Carla Alliaudi
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Valentina Daprà
- Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| | - Francesco Savino
- Department of Pediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
9
|
Bendall ML, de Mulder M, Iñiguez LP, Lecanda-Sánchez A, Pérez-Losada M, Ostrowski MA, Jones RB, Mulder LCF, Reyes-Terán G, Crandall KA, Ormsby CE, Nixon DF. Telescope: Characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput Biol 2019; 15:e1006453. [PMID: 31568525 PMCID: PMC6786656 DOI: 10.1371/journal.pcbi.1006453] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Characterization of Human Endogenous Retrovirus (HERV) expression within the transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment assignment because of sequence similarity. We present Telescope, a computational software tool that provides accurate estimation of transposable element expression (retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the most probable source transcript as determined within a Bayesian statistical model. We demonstrate the utility of our approach through single locus analysis of HERV expression in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude and breadth of the retrotranscriptome can be vastly different among cell types. Furthermore, our approach is robust to differences in sequencing technology and demonstrates that the retrotranscriptome has potential to be used for cell type identification. We compared our tool with other approaches for quantifying transposable element (TE) expression, and found that Telescope has the greatest resolution, as it estimates expression at specific TE insertions rather than at the TE subfamily level. Telescope performs highly accurate quantification of the retrotranscriptomic landscape in RNA-seq experiments, revealing a differential complexity in the transposable element biology of complex systems not previously observed. Telescope is available at https://github.com/mlbendall/telescope.
Collapse
Affiliation(s)
- Matthew L. Bendall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Miguel de Mulder
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Luis Pedro Iñiguez
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Aarón Lecanda-Sánchez
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Mario A. Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., United States of America
| | - Christopher E. Ormsby
- Center for Research in Infectious Diseases (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, N.Y., United States of America
| |
Collapse
|
10
|
Tabone O, Mommert M, Jourdan C, Cerrato E, Legrand M, Lepape A, Allaouchiche B, Rimmelé T, Pachot A, Monneret G, Venet F, Mallet F, Textoris J. Endogenous Retroviruses Transcriptional Modulation After Severe Infection, Trauma and Burn. Front Immunol 2019; 9:3091. [PMID: 30671061 PMCID: PMC6331457 DOI: 10.3389/fimmu.2018.03091] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Although human endogenous retroviruses (HERVs) expression is a growing subject of interest, no study focused before on specific endogenous retroviruses loci activation in severely injured patients. Yet, HERV reactivation is observed in immunity compromised settings like some cancers and auto-immune diseases. Our objective was to assess the transcriptional modulation of HERVs in burn, trauma and septic shock patients. We analyzed HERV transcriptome with microarray data from whole blood samples of a burn cohort (n = 30), a trauma cohort (n = 105) and 2 septic shock cohorts (n = 28, n = 51), and healthy volunteers (HV, n = 60). We described expression of the 337 probesets targeting HERV from U133 plus 2.0 microarray in each dataset and then we compared HERVs transcriptional modulation of patients compared to healthy volunteers. Although all 4 cohorts contained critically ill patients, the majority of the 337 HERVs was not expressed (around 74% in mean). Each cohort had differentially expressed probesets in patients compared to HV (from 19 to 46). Strikingly, 5 HERVs were in common in all types of severely injured patients, with 4 being up-modulated in patients. We highlighted co-expressed profiles between HERV and nearby CD55 and CD300LF genes as well as autonomous HERV expression. We suggest an inflammatory-specific HERV transcriptional response, and importantly, we introduce that the HERVs close to immunity-related genes might have a role on its expression.
Collapse
Affiliation(s)
- Olivier Tabone
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Marine Mommert
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France.,Joint Research Unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, Pierre-Benite, France
| | - Camille Jourdan
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Elisabeth Cerrato
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Matthieu Legrand
- Department of Anesthesiology and Critical Care and Burn Unit, Groupe Hospitalier St-Louis-Lariboisière, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Alain Lepape
- Hospices Civils de Lyon, Intensive Care Unit, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Bernard Allaouchiche
- Hospices Civils de Lyon, Intensive Care Unit, Centre Hospitalier Lyon Sud, Pierre Bénite, France.,Agressions Pulmonaires et Circulatoires dans le Sepsis APCSe VetAgro Sup UPSP 2016.A101, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Thomas Rimmelé
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Alexandre Pachot
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France.,Hospices Civils de Lyon, Immunology Laboratory, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Fabienne Venet
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France.,Hospices Civils de Lyon, Immunology Laboratory, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - François Mallet
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France.,Joint Research Unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, Pierre-Benite, France
| | - Julien Textoris
- EA7426 Hospices Civils de Lyon-bioMérieux-UCBL1 "Pathophysiology of Injury Induced Immunosuppression," Groupement Hospitalier Edouard Herriot, Lyon, France.,Hospices Civils de Lyon, Department of Anaesthesiology and Critical Care Medicine, Groupement Hospitalier Edouard Herriot, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Abstract
Endogenous retrovirus (ERV) sequences make up a large fraction of our genome, yet little is understood about their function and biological relevance. Deep-sequencing data contain valuable information on a genome-wide scale. Yet, due to their highly repetitive nature, analysis of ERVs has been computationally challenging. We describe a bioinformatics tool called ERVmap to analyze transcription of unique sets of human ERVs in a range of cell types in health and disease settings. Our open-source code and accompanied web tool should facilitate researchers in all fields to study the expression patterns of ERVs in sequencing data and should lead to significant advancement in understanding the biological relevance of ERVs in health and disease. Endogenous retroviruses (ERVs) are integrated retroviral elements that make up 8% of the human genome. However, the impact of ERVs on human health and disease is not well understood. While select ERVs have been implicated in diseases, including autoimmune disease and cancer, the lack of tools to analyze genome-wide, locus-specific expression of proviral autonomous ERVs has hampered the progress in the field. Here we describe a method called ERVmap, consisting of an annotated database of 3,220 human proviral ERVs and a pipeline that allows for locus-specific genome-wide identification of proviral ERVs that are transcribed based on RNA-sequencing data, and provide examples of the utility of this tool. Using ERVmap, we revealed cell-type–specific ERV expression patterns in commonly used cell lines as well as in primary cells. We identified 124 unique ERV loci that are significantly elevated in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus that represent an IFN-independent signature. Finally, we identified additional tumor-associated ERVs that correlate with cytolytic activity represented by granzyme and perforin expression in breast cancer tissue samples. The open-source code of ERVmap and the accompanied web tool are made publicly available to quantify proviral ERVs in RNA-sequencing data with ease. Use of ERVmap across a range of diseases and experimental conditions has the potential to uncover novel disease-associated antigens and effectors involved in human health that is currently missed by focusing on protein-coding sequences.
Collapse
|
12
|
Morris G, Maes M, Murdjeva M, Puri BK. Do Human Endogenous Retroviruses Contribute to Multiple Sclerosis, and if So, How? Mol Neurobiol 2018; 56:2590-2605. [PMID: 30047100 PMCID: PMC6459794 DOI: 10.1007/s12035-018-1255-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The gammaretroviral human endogenous retrovirus (HERV) families MRSV/HERV-W and HERV-H (including the closely related HERV-Fc1) are associated with an increased risk of multiple sclerosis (MS). Complete HERV sequences betray their endogenous retroviral origin, with open reading frames in gag, pro, pol and env being flanked by two long terminal repeats containing promoter and enhancer sequences with the capacity to regulate HERV transactivation and the activity of host genes in spite of endogenous epigenetic repression mechanisms. HERV virions, RNA, cDNA, Gag and Env, and antibodies to HERV transcriptional products, have variously been found in the blood and/or brain and/or cerebrospinal fluid of MS patients, with the HERV expression level being associated with disease status. Furthermore, some HERV-associated single nucleotide polymorphisms (SNPs), such as rs662139 T/C in a 3-kb region of Xq22.3 containing a HERV-W env locus, and rs391745, upstream of the HERV-Fc1 locus on the X chromosome, are associated with MS susceptibility, while a negative association has been reported with SNPs in the tripartite motif-containing (TRIM) protein-encoding genes TRIM5 and TRIM22. Factors affecting HERV transcription include immune activation and inflammation, since HERV promoter regions possess binding sites for related transcription factors; oxidative stress, with oxidation of guanine to 8-oxoguanine and conversion of cytosine to 5-hydroxymethylcytosine preventing binding of methyl groups transferred by DNA methyltransferases; oxidative stress also inhibits the activity of deacetylases, thereby favouring the acetylation of histone lysine residues favouring gene expression; interferon beta; natalizumab treatment; impaired epigenetic regulation; and the sex of patients.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Medical University, Plovdiv, Bulgaria
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
13
|
Turnbull MG, Douville RN. Related Endogenous Retrovirus-K Elements Harbor Distinct Protease Active Site Motifs. Front Microbiol 2018; 9:1577. [PMID: 30072963 PMCID: PMC6058741 DOI: 10.3389/fmicb.2018.01577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Endogenous retrovirus-K is a group of related genomic elements descending from retroviral infections in human ancestors. HML2 is the clade of these viruses which contains the most intact provirus copies. These elements can be transcribed and translated in healthy and diseased tissues, and some of them produce active retroviral enzymes, such as protease. Retroviral gene products, including protease, contribute to illness in exogenous retroviral infections. There are ongoing efforts to test anti-retroviral regimens against endogenous retroviruses. Herein, we examine the potential activity and diversity of human endogenous retrovirus-K proteases, and their potential for impact on immunity and human disease. Results: Sequences similar to the endogenous retrovirus-K HML2 protease and reverse transcriptase were identified in the human genome, classified by phylogenetic inference and compared to Repbase reference sequences. The topologies of trees inferred from protease and reverse transcriptase sequences were similar and agreed with the classification using reference sequences. Surprisingly, only 62/480 protease sequences identified by BLAST were classified as HML2; the remainder were classified as other HML groups, with the majority (216) classified as HML3. Variation in functionally significant protease motifs was explored, and two major active site variants were identified – the DTGAD variant is common in all groups, but the DTGVD motif appears limited to HML3, HML5, and HML6. Furthermore, distinct RNA expression patterns of protease variants are seen in disease states, such as amyotrophic lateral sclerosis, breast cancer, and prostate cancer. Conclusion: Transcribed ERVK proteases exhibit a diversity which could impact immunity and inhibitor-based treatments, and these facets should be considered when designing therapeutic regimens.
Collapse
Affiliation(s)
| | - Renée N Douville
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Mommert M, Tabone O, Oriol G, Cerrato E, Guichard A, Naville M, Fournier P, Volff JN, Pachot A, Monneret G, Venet F, Brengel-Pesce K, Textoris J, Mallet F. LTR-retrotransposon transcriptome modulation in response to endotoxin-induced stress in PBMCs. BMC Genomics 2018; 19:522. [PMID: 29976163 PMCID: PMC6034278 DOI: 10.1186/s12864-018-4901-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Background Human Endogenous Retroviruses (HERVs) and Mammalian apparent LTR-retrotransposons (MaLRs) represent the 8% of our genome and are distributed among our 46 chromosomes. These LTR-retrotransposons are thought to be essentially silent except in cancer, autoimmunity and placental development. Their Long Terminal Repeats (LTRs) constitute putative promoter or polyA regulatory sequences. In this study, we used a recently described high-density microarray which can be used to study HERV/MaLR transcriptome including 353,994 HERV/MaLR loci and 1559 immunity-related genes. Results We described, for the first time, the HERV transcriptome in peripheral blood mononuclear cells (PBMCs) using a cellular model mimicking inflammatory response and monocyte anergy observed after septic shock. About 5.6% of the HERV/MaLR repertoire is transcribed in PBMCs. Roughly one-tenth [5.7–13.1%] of LTRs exhibit a putative constitutive promoter or polyA function while one-quarter [19.5–27.6%] may shift from silent to active. Evidence was given that some HERVs/MaLRs and genes may share similar regulation control under lipopolysaccharide (LPS) stimulation conditions. Stimulus-dependent response confirms that HERV expression is tightly regulated in PBMCs. Altogether, these observations make it possible to integrate 62 HERVs/MaLRs and 26 genes in 11 canonical pathways and suggest a link between HERV expression and immune response. The transcriptional modulation of HERVs located close to genes such as OAS2/3 and IFI44/IFI44L or at a great distance from genes was discussed. Conclusion This microarray-based approach revealed the expression of about 47,466 distinct HERV loci and identified 951 putative promoter LTRs and 744 putative polyA LTRs in PBMCs. HERV/MaLR expression was shown to be tightly modulated under several stimuli including high-dose and low-dose LPS and Interferon-γ (IFN-γ). HERV incorporation at the crossroads of immune response pathways paves the way for further functional studies and analyses of the HERV transcriptome in altered immune responses in vivo such as in sepsis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4901-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marine Mommert
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France.
| | - Olivier Tabone
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France
| | - Guy Oriol
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Elisabeth Cerrato
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France
| | - Audrey Guichard
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon, 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Paola Fournier
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon, 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Alexandre Pachot
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France.,Hospices Civils de Lyon, Immunology Laboratory, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Fabienne Venet
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France.,Hospices Civils de Lyon, Immunology Laboratory, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Karen Brengel-Pesce
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France.,Hospices Civils de Lyon, Department of Anaesthesiology and Critical Care Medicine, Groupement Hospitalier Edouard Herriot, Université Claude Bernard Lyon 1, Lyon, France
| | - François Mallet
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon, Cedex 3, France.
| |
Collapse
|
15
|
Matveeva OV, Ogurtsov AY, Nazipova NN, Shabalina SA. Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes. PLoS One 2018; 13:e0199162. [PMID: 29928000 PMCID: PMC6013149 DOI: 10.1371/journal.pone.0199162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/02/2018] [Indexed: 12/20/2022] Open
Abstract
Off-target oligoprobe's interaction with partially complementary nucleotide sequences represents a problem for many bio-techniques. The goal of the study was to identify oligoprobe sequence characteristics that control the ratio between on-target and off-target hybridization. To understand the complex interplay between specific and genome-wide off-target (cross-hybridization) signals, we analyzed a database derived from genomic comparison hybridization experiments performed with an Affymetrix tiling array. The database included two types of probes with signals derived from (i) a combination of specific signal and cross-hybridization and (ii) genomic cross-hybridization only. All probes from the database were grouped into bins according to their sequence characteristics, where both hybridization signals were averaged separately. For selection of specific probes, we analyzed the following sequence characteristics: vulnerability to self-folding, nucleotide composition bias, numbers of G nucleotides and GGG-blocks, and occurrence of probe's k-mers in the human genome. Increases in bin ranges for these characteristics are simultaneously accompanied by a decrease in hybridization specificity-the ratio between specific and cross-hybridization signals. However, both averaged hybridization signals exhibit growing trends along with an increase of probes' binding energy, where the hybridization specific signal increases significantly faster in comparison to the cross-hybridization. The same trend is evident for the S function, which serves as a combined evaluation of probe binding energy and occurrence of probe's k-mers in the genome. Application of S allows extracting a larger number of specific probes, as compared to using only binding energy. Thus, we showed that high values of specific and cross-hybridization signals are not mutually exclusive for probes with high values of binding energy and S. In this study, the application of a new set of sequence characteristics allows detection of probes that are highly specific to their targets for array design and other bio-techniques that require selection of specific probes.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Biopolymer Design LLC, Acton, Massachusetts, United States of America
- * E-mail: (OVM); (SAS)
| | - Aleksey Y. Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nafisa N. Nazipova
- Institute of Mathematical Problems of Biology, RAS – the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (OVM); (SAS)
| |
Collapse
|
16
|
A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere 2018; 3:mSphere00069-18. [PMID: 29564396 PMCID: PMC5853486 DOI: 10.1128/mspheredirect.00069-18] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have developed a new reference viral database (RVDB) that provides a broad representation of different virus species from eukaryotes by including all viral, virus-like, and virus-related sequences (excluding bacteriophages), regardless of their size. In particular, RVDB contains endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Sequences were clustered to reduce redundancy while retaining high viral sequence diversity. A particularly useful feature of RVDB is the reduction of cellular sequences, which can enhance the run efficiency of large transcriptomic and genomic data analysis and increase the specificity of virus detection. Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have developed a new reference viral database (RVDB) that provides a broad representation of different virus species from eukaryotes by including all viral, virus-like, and virus-related sequences (excluding bacteriophages), regardless of their size. In particular, RVDB contains endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Sequences were clustered to reduce redundancy while retaining high viral sequence diversity. A particularly useful feature of RVDB is the reduction of cellular sequences, which can enhance the run efficiency of large transcriptomic and genomic data analysis and increase the specificity of virus detection.
Collapse
|