1
|
Iacono R, Slavov GT, Davey CL, Clifton-Brown J, Allison G, Bosch M. Variability of cell wall recalcitrance and composition in genotypes of Miscanthus from different genetic groups and geographical origin. FRONTIERS IN PLANT SCIENCE 2023; 14:1155188. [PMID: 37346113 PMCID: PMC10279889 DOI: 10.3389/fpls.2023.1155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Miscanthus is a promising crop for bioenergy and biorefining in Europe. The improvement of Miscanthus as a crop relies on the creation of new varieties through the hybridization of germplasm collected in the wild with genetic variation and suitable characteristics in terms of resilience, yield and quality of the biomass. Local adaptation has likely shaped genetic variation for these characteristics and is therefore important to quantify. A key biomass quality parameter for biorefining is the ease of conversion of cell wall polysaccharides to monomeric sugars. Thus far, the variability of cell wall related traits in Miscanthus has mostly been explored in accessions from limited genetic backgrounds. Here we analysed the soil and climatic conditions of the original collection sites of 592 Miscanthus genotypes, which form eight distinct genetic groups based on discriminant analysis of principal components of 25,014 single-nucleotide polymorphisms. Our results show that species of the genus Miscanthus grow naturally across a range of soil and climate conditions. Based on a detailed analysis of 49 representative genotypes, we report generally minor differences in cell wall characteristics between different genetic groups and high levels of genetic variation within groups, with less investigated species like M. floridulus showing lower recalcitrance compared to the other genetic groups. The results emphasize that both inter- and intra- specific variation in cell wall characteristics and biomass recalcitrance can be used effectively in Miscanthus breeding programmes, while also reinforcing the importance of considering biomass yield when quantifying overall conversion efficiency. Thus, in addition to reflecting the complexity of the interactions between compositional and structural cell wall features and cell wall recalcitrance to sugar release, our results point to traits that could potentially require attention in breeding programmes targeted at improving the Miscanthus biomass crop.
Collapse
Affiliation(s)
- Rosario Iacono
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Gancho T. Slavov
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Radiata Pine Breeding Company, Rotorua, New Zealand
| | - Christopher L. Davey
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - John Clifton-Brown
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Gordon Allison
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Maurice Bosch
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| |
Collapse
|
2
|
Bioengineering and Molecular Biology of Miscanthus. ENERGIES 2022. [DOI: 10.3390/en15144941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resources that can link its chromosomes to related diploid sorghum and complex polyploid sugarcane. Analysis of Miscanthus sinensis and Miscanthus sacchariflorus showed intense mixing and interspecific hybridization and documented the origin of a high-yielding triploid bioenergetic plant, Miscanthus × giganteus. The Miscanthus genome expands comparative genomics functions to better understand the main abilities of Andropogoneae herbs. Miscanthus × giganteus is widely regarded as a promising lignocellulosic biomass crop due to its high-biomass yield, which does not emit toxic compounds into the environment, and ability to grow in depleted lands. The high production cost of lignocellulosic bioethanol limits its commercialization. The main components that inhibit the enzymatic reactions of fermentation and saccharification are lignin in the cell wall and its by-products released during the pre-treatment stage. One approach to overcoming this barrier could be to genetically modify the genes involved in lignin biosynthesis, manipulating the lignin content and composition of miscanthus.
Collapse
|
3
|
Yoshida K, Sakamoto S, Mitsuda N. In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. PLANT & CELL PHYSIOLOGY 2021; 62:1813-1827. [PMID: 34718770 DOI: 10.1093/pcp/pcab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
To mitigate the effects of global warming and to preserve the limited fossil fuel resources, an increased exploitation of plant-based materials and fuels is required, which would be one of the most important innovations related to sustainable development. Cell walls account for the majority of plant dry biomass and so is the target of such innovations. In this review, we discuss recent advances in in planta cell wall engineering through genetic manipulations, with a focus on wild-type-based and mutant-based approaches. The long history of using a wild-type-based approach has resulted in the development of many strategies for manipulating lignin, hemicellulose and pectin to decrease cell wall recalcitrance. In addition to enzyme-encoding genes, many transcription factor genes important for changing relevant cell wall characteristics have been identified. Although mutant-based cell wall engineering is relatively new, it has become feasible due to the rapid development of genome-editing technologies and systems biology-related research; we will soon enter an age of designed artificial wood production via complex genetic manipulations of many industrially important trees and crops.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Nase-cho 344-1, Totsuka-ku, Yokohama, Kanagawa, 245-0051 Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| |
Collapse
|
4
|
Zheng C, Xiao L, Iqbal Y, Sun G, Feng H, Liu F, Duan M, Yi Z. Miscanthus
interspecific hybrids exceed the biomass yield and quality of their parents in the saline–alkaline Yellow River delta. Food Energy Secur 2021. [DOI: 10.1002/fes3.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Cheng Zheng
- College of Agronomy Hunan Agricultural University Changsha China
| | - Liang Xiao
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
| | - Yasir Iqbal
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
| | - Guorong Sun
- Binzhou Polytechnic College Binzhou Shandong China
| | - Hui Feng
- Binzhou Polytechnic College Binzhou Shandong China
| | - Fulai Liu
- Faculty of Science Department of Plant and Environmental Sciences University of Copenhagen Tåstrup Denmark
| | - Meijuan Duan
- College of Agronomy Hunan Agricultural University Changsha China
| | - Zili Yi
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
- Hunan Engineering Laboratory of Miscanthus Ecological Application TechnologyHunan Agricultural University Changsha Hunan China
| |
Collapse
|
5
|
Characterization of the Ghd8 Flowering Time Gene in a Mini-Core Collection of Miscanthus sinensis. Genes (Basel) 2021; 12:genes12020288. [PMID: 33669585 PMCID: PMC7922028 DOI: 10.3390/genes12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The optimal flowering time for bioenergy crop Miscanthus is essential for environmental adaptability and biomass accumulation. However, little is known about how genes controlling flowering in other grasses contribute to flowering regulation in Miscanthus. Here, we report on the sequence characterization and gene expression of Miscanthus sinensisGhd8, a transcription factor encoding a HAP3/NF-YB DNA-binding domain, which has been identified as a major quantitative trait locus in rice, with pleiotropic effects on grain yield, heading date and plant height. In M. sinensis, we identified two homoeologous loci, MsiGhd8A located on chromosome 13 and MsiGhd8B on chromosome 7, with one on each of this paleo-allotetraploid species’ subgenomes. A total of 46 alleles and 28 predicted protein sequence types were identified in 12 wild-collected accessions. Several variants of MsiGhd8 showed a geographic and latitudinal distribution. Quantitative real-time PCR revealed that MsiGhd8 expressed under both long days and short days, and MsiGhd8B showed a significantly higher expression than MsiGhd8A. The comparison between flowering time and gene expression indicated that MsiGhd8B affected flowering time in response to day length for some accessions. This study provides insight into the conserved function of Ghd8 in the Poaceae, and is an important initial step in elucidating the flowering regulatory network of Miscanthus.
Collapse
|
6
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
7
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Abstract
Efficient pretreatment is a prerequisite for lignocellulosic biomass biorefinery due to the structure of lignocellulose. This study is a first-time investigation into the structural changes of Miscanthus biomass treated with 60Co γ-ray irradiation in different doses up to 1200 kGy. The structural properties of the treated sample have been systematically characterized by FTIR, thermogravimetric analysis (TGA), XRD, gel permeation chromatography (GPC), a laser particle size analyzer, SEM, an atomic force microscope (AFM), and NMR. The results show that irradiation treatment can partially destroy the intra- or inter-molecular hydrogen bonds of biomass. Irradiation treatment can also reduce particle size, narrow the distribution range, as well as increase the specific surface area of biomasses. Noticeably, the TGA stability of the treated biomass decreases with increasing absorbed doses. To respond to these structural changes, the treated biomass can be easily hydrolyzed by cellulases with a high yield of reducing sugars (557.58 mg/g biomass), much higher than that of the untreated sample. We conclude that irradiation treatment can damage biomass structure, a promising strategy for biomass biorefinery in the future.
Collapse
|
9
|
Clifton‐Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy‐Bokern D, Smart LB, Adler A, Ashman C, Awty‐Carroll D, Bastien C, Bopper S, Botnari V, Brancourt‐Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu T, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim D, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon Yu C, Zalesny RS, Zong J, Lewandowski I. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:118-151. [PMID: 30854028 PMCID: PMC6392185 DOI: 10.1111/gcbb.12566] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
Collapse
Affiliation(s)
- John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systemsUniversity of TusciaViterboItaly
| | | | - Huw Dylan Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaNew York
| | - Anneli Adler
- SweTree Technologies ABUmeåSweden
- Institute of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Sebastian Bopper
- Department of Seed Science and Technology, Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Vasile Botnari
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | | | - Zhiyong Chen
- Insitute of MiscanthusHunan Agricultural UniversityHunan ChangshaChina
| | - Lindsay V. Clark
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Salvatore Cosentino
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Sue Dalton
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Oene Dolstra
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Joerg Greef
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | | | - Astley Hastings
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenUK
| | | | - Tsai‐Wen Hsu
- Taiwan Endemic Species Research Institute (TESRI)Nantou CountyTaiwan
| | - Lin S. Huang
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antonella Iurato
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Xiaoli Jin
- Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Uffe Jørgensen
- Department of AgroecologyAarhus University Centre for Circular BioeconomyTjeleDenmark
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Do‐Soon Kim
- Department of Plant Sciences, Research Institute of Agriculture & Life Sciences, CALSSeoul National UniversitySeoulKorea
| | - Jianxiu Liu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Jon P. McCalmont
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Bernard G. McMahon
- Natural Resources Research InstituteUniversity of Minnesota – DuluthDuluthMinnesota
| | | | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Erik J. Sacks
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Anatolii Sandu
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | - Giovanni Scalici
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Kai Schwarz
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | - Danilo Scordia
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Reza Shafiei
- James Hutton InstituteUniversity of DundeeDundeeUK
| | | | | | | | | | - Gail Taylor
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Andres F. Torres
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Luisa M. Trindade
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Timothy Tschaplinski
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Gerald A. Tuskan
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Toshihiko Yamada
- Field Science Centre for the Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chang Yeon Yu
- College of Agriculture and Life Sciences 2Kangwon National UniversityChuncheonSouth Korea
| | | | - Junqin Zong
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| |
Collapse
|
10
|
da Costa RMF, Pattathil S, Avci U, Winters A, Hahn MG, Bosch M. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:85. [PMID: 31011368 PMCID: PMC6463665 DOI: 10.1186/s13068-019-1426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass from dedicated energy crops such as Miscanthus spp. is an important tool to combat anthropogenic climate change. However, we still do not exactly understand the sources of cell wall recalcitrance to deconstruction, which hinders the efficient biorefining of plant biomass into biofuels and bioproducts. RESULTS We combined detailed phenotyping, correlation studies and discriminant analyses, to identify key significantly distinct variables between miscanthus organs, genotypes and most importantly, between saccharification performances. Furthermore, for the first time in an energy crop, normalised total quantification of specific cell wall glycan epitopes is reported and correlated with saccharification. CONCLUSIONS In stems, lignin has the greatest impact on recalcitrance. However, in leaves, matrix glycans and their decorations have determinant effects, highlighting the importance of biomass fine structures, in addition to more commonly described cell wall compositional features. The results of our interrogation of the miscanthus cell wall promote the concept that desirable cell wall traits for increased biomass quality are highly dependent on the target biorefining products. Thus, for the development of biorefining ideotypes, instead of a generalist miscanthus variety, more realistic and valuable approaches may come from defining a collection of specialised cultivars, adapted to specific conditions and purposes.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Mascoma LLC (Lallemand, Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| |
Collapse
|
11
|
Ge C, Ai X, Jia S, Yang Y, Che L, Yi Z, Chen C. Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence. Mol Genet Genomics 2018; 294:35-45. [PMID: 30159617 DOI: 10.1007/s00438-018-1486-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Miscanthus is recognized as a promising lignocellulosic crop for the production of bioethanol and bioproducts worldwide. To facilitate the identification of agronomical important traits and establish genetics knowledge, two genetic maps were developed from a controlled interspecific cross between M. floridulus and M. sacchariflorus. A total of 650 SSR markers were mapped in M. floridulus, spanning 19 linkage groups and 2053.31 cM with an average interval of 3.25 cM. The map of M. sacchariflorus comprised 495 SSR markers in 19 linkage groups covering 1684.86 cM with an average interval of 3.54 cM. The estimation on genome length indicated that the genome coverage of parental genetic maps were 93.87% and 89.91%, respectively. Eighty-eight bi-parental common markers were allowed to connect the two maps, and six pairs of syntenic linkage groups were recognized. Furthermore, quantitative trait loci (QTL) mapping of three agronomic traits, namely, plant height (PH), heading time (HT), and flowering time (FT), demonstrated that a total of 66 QTLs were identified in four consecutive years using interval mapping and multiple-QTL model. The LOD value of these QTLs ranged from 2.51 to 10.60, and the phenotypic variation explained varied from 9.50 to 37.10%. QTL cluster in syntenic groups MF19/MS7 contained six stable QTLs associated with PH, HT, and FT. In conclusion, we report for the first time the genetic mapping of biomass traits in M. floridulus and M. sacchariflorus. These results will be a valuable genetic resource, facilitating the discovery of essential genes and breeding of Miscanthus.
Collapse
Affiliation(s)
- Chunxia Ge
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Ai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shengfeng Jia
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yinqing Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lu Che
- Network Information Technology Center, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Cuixia Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China. .,College of Agronomy, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
12
|
Whitehead C, Ostos Garrido FJ, Reymond M, Simister R, Distelfeld A, Atienza SG, Piston F, Gomez LD, McQueen‐Mason SJ. A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. THE NEW PHYTOLOGIST 2018; 218:974-985. [PMID: 29574807 PMCID: PMC5947151 DOI: 10.1111/nph.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/05/2018] [Indexed: 05/27/2023]
Abstract
The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops.
Collapse
Affiliation(s)
- Caragh Whitehead
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Francisco J. Ostos Garrido
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Matthieu Reymond
- Institut Jean‐Pierre BourginUMR 1318 INRA‐AgroParisTechINRA Centre de Versailles‐GrignonRoute de Saint‐Cyr78026VersaillesFrance
| | - Rachael Simister
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Assaf Distelfeld
- Deparment of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel AvivIsrael
| | - Sergio G. Atienza
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Fernando Piston
- Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible – Consejo Superior de Investigaciones CientíficasCórdobaSpain
| | - Leonardo D. Gomez
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| | - Simon J. McQueen‐Mason
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkPO Box 373Wentworth WayYorkYO10 5DDUK
| |
Collapse
|