1
|
Islam R, Rahman A. An alignment-free method for detection of missing regions for phylogenetic analysis. Heliyon 2024; 10:e32227. [PMID: 38933968 PMCID: PMC11200290 DOI: 10.1016/j.heliyon.2024.e32227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Phylogenetic tree estimation using conventional approaches usually requires pairwise or multiple sequence alignment. However, sequence alignment has difficulties related to scalability and accuracy in case of long sequences such as whole genomes, low sequence identity, and in presence of genomic rearrangements. To address these issues, alignment-free approaches have been proposed. While these methods have demonstrated promising results, many of these lead to errors when regions are missing from the sequences of one or more species that are trivially detected in alignment-based methods. Here, we present an alignment-free method for detecting missing regions in sequences of species for which phylogeny is to be estimated. It is based on counts of k-mers and can be used to filter out k-mers belonging to regions in one species that are missing in one or more of the other species. We perform experiments with real and simulated datasets containing missing regions and find that it can successfully detect a large fraction of such k-mers and can lead to improvements in the estimated phylogenies. Our method can be used in k-mer based alignment-free phylogeny estimation methods to filter out k-mers corresponding to missing regions.
Collapse
Affiliation(s)
- Rubyeat Islam
- Department of Computer Science and Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Atif Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
2
|
Pornputtapong N, Acheampong DA, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T, Jun SR, Yongkiettrakul S, Chokesajjawatee N, Nookaew I. KITSUNE: A Tool for Identifying Empirically Optimal K-mer Length for Alignment-Free Phylogenomic Analysis. Front Bioeng Biotechnol 2020; 8:556413. [PMID: 33072720 PMCID: PMC7538862 DOI: 10.3389/fbioe.2020.556413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Genomic DNA is the best “unique identifier” for organisms. Alignment-free phylogenomic analysis, simple, fast, and efficient method to compare genome sequences, relies on looking at the distribution of small DNA sequence of a particular length, referred to as k-mer. The k-mer approach has been explored as a basis for sequence analysis applications, including assembly, phylogenetic tree inference, and classification. Although this approach is not novel, selecting the appropriate k-mer length to obtain the optimal resolution is rather arbitrary. However, it is a very important parameter for achieving the appropriate resolution for genome/sequence distances to infer biologically meaningful phylogenetic relationships. Thus, there is a need for a systematic approach to identify the appropriate k-mer from whole-genome sequences. We present K-mer–length Iterative Selection for UNbiased Ecophylogenomics (KITSUNE), a tool for assessing the empirically optimal k-mer length of any given set of genomes of interest for phylogenomic analysis via a three-step approach based on (1) cumulative relative entropy (CRE), (2) average number of common features (ACF), and (3) observed common features (OCF). Using KITSUNE, we demonstrated the feasibility and reliability of these measurements to obtain empirically optimal k-mer lengths of 11, 17, and ∼34 from large genome datasets of viruses, bacteria, and fungi, respectively. Moreover, we demonstrated a feature of KITSUNE for accurate species identification for the two de novo assembled bacterial genomes derived from error-prone long-reads sequences, and for a published yeast genome. In addition, KITSUNE was used to identify the shortest species-specific k-mer accurately identifying viruses. KITSUNE is freely available at https://github.com/natapol/kitsune.
Collapse
Affiliation(s)
- Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, and Research Unit of DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, Thailand
| | - Daniel A Acheampong
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Tang K, Ren J, Sun F. Afann: bias adjustment for alignment-free sequence comparison based on sequencing data using neural network regression. Genome Biol 2019; 20:266. [PMID: 31801606 PMCID: PMC6891986 DOI: 10.1186/s13059-019-1872-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/29/2019] [Indexed: 11/27/2022] Open
Abstract
Alignment-free methods, more time and memory efficient than alignment-based methods, have been widely used for comparing genome sequences or raw sequencing samples without assembly. However, in this study, we show that alignment-free dissimilarity calculated based on sequencing samples can be overestimated compared with the dissimilarity calculated based on their genomes, and this bias can significantly decrease the performance of the alignment-free analysis. Here, we introduce a new alignment-free tool, Alignment-Free methods Adjusted by Neural Network (Afann) that successfully adjusts this bias and achieves excellent performance on various independent datasets. Afann is freely available at https://github.com/GeniusTang/Afann.
Collapse
Affiliation(s)
- Kujin Tang
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jie Ren
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Ren J, Bai X, Lu YY, Tang K, Wang Y, Reinert G, Sun F. Alignment-Free Sequence Analysis and Applications. Annu Rev Biomed Data Sci 2018; 1:93-114. [PMID: 31828235 PMCID: PMC6905628 DOI: 10.1146/annurev-biodatasci-080917-013431] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genome and metagenome comparisons based on large amounts of next generation sequencing (NGS) data pose significant challenges for alignment-based approaches due to the huge data size and the relatively short length of the reads. Alignment-free approaches based on the counts of word patterns in NGS data do not depend on the complete genome and are generally computationally efficient. Thus, they contribute significantly to genome and metagenome comparison. Recently, novel statistical approaches have been developed for the comparison of both long and shotgun sequences. These approaches have been applied to many problems including the comparison of gene regulatory regions, genome sequences, metagenomes, binning contigs in metagenomic data, identification of virus-host interactions, and detection of horizontal gene transfers. We provide an updated review of these applications and other related developments of word-count based approaches for alignment-free sequence analysis.
Collapse
Affiliation(s)
- Jie Ren
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Xin Bai
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Yang Young Lu
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Kujin Tang
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Ying Wang
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Gesine Reinert
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Fengzhu Sun
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
The International Conference on Intelligent Biology and Medicine (ICIBM) 2016: summary and innovation in genomics. BMC Genomics 2017; 18:703. [PMID: 28984207 PMCID: PMC5629612 DOI: 10.1186/s12864-017-4018-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this editorial, we first summarize the 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) that was held on December 8–10, 2016 in Houston, Texas, USA, and then briefly introduce the ten research articles included in this supplement issue. ICIBM 2016 included four workshops or tutorials, four keynote lectures, four conference invited talks, eight concurrent scientific sessions and a poster session for 53 accepted abstracts, covering current topics in bioinformatics, systems biology, intelligent computing, and biomedical informatics. Through our call for papers, a total of 77 original manuscripts were submitted to ICIBM 2016. After peer review, 11 articles were selected in this special issue, covering topics such as single cell RNA-seq analysis method, genome sequence and variation analysis, bioinformatics method for vaccine development, and cancer genomics.
Collapse
|