1
|
Pradhan G, Engsontia P. Diversity of the Antimicrobial Peptide Genes in Collembola. INSECTS 2023; 14:215. [PMID: 36975900 PMCID: PMC10051947 DOI: 10.3390/insects14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multidrug-resistant bacteria are a current health crisis threatening the world's population, and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are part of the organism's innate immune system, are a promising new drug class as they can disrupt bacterial cell membranes. This study explored antimicrobial peptide genes in collembola, a non-insect hexapod lineage that has survived in microbe-rich habitats for millions of years, and their antimicrobial peptides have not been thoroughly investigated. We used in silico analysis (homology-based gene identification, physicochemical and antimicrobial property prediction) to identify AMP genes from the genomes and transcriptomes of five collembola representing three main suborders: Entomobryomorpha (Orchesella cincta, Sinella curviseta), Poduromorpha (Holacanthella duospinosa, Anurida maritima), and Symphypleona (Sminthurus viridis). We identified 45 genes belonging to five AMP families, including (a) cysteine-rich peptides: diapausin, defensin, and Alo; (b) linear α-helical peptide without cysteine: cecropin; (c) glycine-rich peptide: diptericin. Frequent gene gains and losses were observed in their evolution. Based on the functions of their orthologs in insects, these AMPs potentially have broad activity against bacteria, fungi, and viruses. This study provides candidate collembolan AMPs for further functional analysis that could lead to medicinal use.
Collapse
Affiliation(s)
- Goma Pradhan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Patamarerk Engsontia
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Robson M, Chooi KM, Blouin AG, Knight S, MacDiarmid RM. A National Catalogue of Viruses Associated with Indigenous Species Reveals High-Throughput Sequencing as a Driver of Indigenous Virus Discovery. Viruses 2022; 14:v14112477. [PMID: 36366575 PMCID: PMC9693408 DOI: 10.3390/v14112477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Viruses are important constituents of ecosystems, with the capacity to alter host phenotype and performance. However, virus discovery cued by disease symptoms overlooks latent or beneficial viruses, which are best detected using targeted virus detection or discovered by non-targeted methods, e.g., high-throughput sequencing (HTS). To date, in 64 publications, 701 viruses have been described associated with indigenous species of Aotearoa New Zealand. Viruses were identified in indigenous birds (189 viruses), bats (13 viruses), starfish (4 viruses), insects (280 viruses), and plants (126 viruses). HTS gave rise to a 21.9-fold increase in virus discovery rate over the targeted methods, and 72.7-fold over symptom-based methods. The average number of viruses reported per publication has also increased proportionally over time. The use of HTS has driven the described national virome recently by 549 new-to-science viruses; all are indigenous. This report represents the first catalogue of viruses associated with indigenous species of a country. We provide evidence that the application of HTS to samples of Aotearoa New Zealand's unique fauna and flora has driven indigenous virus discovery, a key step in the process to understand the role of viruses in the biological diversity and ecology of the land, sea, and air environments of a country.
Collapse
Affiliation(s)
- Merlyn Robson
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Bio-Protection Research Centre, Lincoln University, P.O. Box 85084, Lincoln 7674, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | - Sarah Knight
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Robin Marion MacDiarmid
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Bio-Protection Research Centre, Lincoln University, P.O. Box 85084, Lincoln 7674, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Correspondence:
| |
Collapse
|
3
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Almudi I, Vizueta J, Wyatt CDR, de Mendoza A, Marlétaz F, Firbas PN, Feuda R, Masiero G, Medina P, Alcaina-Caro A, Cruz F, Gómez-Garrido J, Gut M, Alioto TS, Vargas-Chavez C, Davie K, Misof B, González J, Aerts S, Lister R, Paps J, Rozas J, Sánchez-Gracia A, Irimia M, Maeso I, Casares F. Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings. Nat Commun 2020; 11:2631. [PMID: 32457347 PMCID: PMC7250882 DOI: 10.1038/s41467-020-16284-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.
Collapse
Affiliation(s)
- Isabel Almudi
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Christopher D R Wyatt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS, London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Panos N Firbas
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Giulio Masiero
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Patricia Medina
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Ana Alcaina-Caro
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Kristofer Davie
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Louvain, Belgium
- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000, Louvain, Belgium
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Ignacio Maeso
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain
| | - Fernando Casares
- GEM-DMC2 Unit, The CABD (CSIC-UPO-JA), Ctra. de Utrera km 1, 41013, Seville, Spain.
| |
Collapse
|
5
|
Miller SW, Posakony JW. Disparate expression specificities coded by a shared Hox-C enhancer. eLife 2020; 9:39876. [PMID: 32342858 PMCID: PMC7188484 DOI: 10.7554/elife.39876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Can a single regulatory sequence be shared by two genes undergoing functional divergence? Here we describe a single promiscuous enhancer within the Drosophila Antennapedia Complex, EO053, that directs aspects of the expression of two adjacent genes, pb (a Hox2 ortholog) and zen2 (a divergent Hox3 paralog), with disparate spatial and temporal expression patterns. We were unable to separate the pb-like and zen2-like specificities within EO053, and we identify sequences affecting both expression patterns. Importantly, genomic deletion experiments demonstrate that EO053 cooperates with additional pb- and zen2-specific enhancers to regulate the mRNA expression of both genes. We examine sequence conservation of EO053 within the Schizophora, and show that patterns of synteny between the Hox2 and Hox3 orthologs in Arthropods are consistent with a shared regulatory relationship extending prior to the Hox3/zen divergence. Thus, EO053 represents an example of two genes having evolved disparate outputs while utilizing this shared regulatory region. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Steve W Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| | - James W Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| |
Collapse
|
6
|
Sun X, Ding Y, Orr MC, Zhang F. Streamlining universal single-copy orthologue and ultraconserved element design: A case study in Collembola. Mol Ecol Resour 2020; 20. [PMID: 32065730 DOI: 10.1111/1755-0998.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
Genomic data sets are increasingly central to ecological and evolutionary biology, but far fewer resources are available for invertebrates. Powerful new computational tools and the rapidly decreasing cost of Illumina sequencing are beginning to change this, enabling rapid genome assembly and reference marker extraction. We have developed and tested a practical workflow for developing genomic resources in nonmodel groups with real-world data on Collembola (springtails), one of the most dominant soil animals on Earth. We designed universal molecular marker sets, single-copy orthologues (BUSCOs) and ultraconserved elements (UCEs), using three existing and 11 newly generated genomes. Both marker types were tested in silico via marker capture success and phylogenetic performance. The new genomes were assembled with Illumina short reads and 9,585-14,743 protein-coding genes were predicted with ab initio and protein homology evidence. We identified 1,997 benchmarking universal single-copy orthologues (BUSCOs) across 14 genomes and created and assessed a custom BUSCO data set for extracting single-copy genes. We also developed a new UCE probe set containing 46,087 baits targeting 1,885 loci. We successfully captured 1,437-1,865 BUSCOs and 975-1,186 UCEs across 14 genomes. Phylogenomic reconstructions using these markers proved robust, giving new insight on deep-time collembolan relationships. Our study demonstrates the feasibility of generating thousands of universal markers from highly efficient whole-genome sequencing, providing a valuable resource for genome-scale investigations in evolutionary biology and ecology.
Collapse
Affiliation(s)
- Xin Sun
- J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Godeiro NN, Pacheco G, Liu S, Gioia Cipola N, Berbel‐Filho WM, Zhang F, Gilbert MTP, Bellini BC. Phylogeny of Neotropical Seirinae (Collembola, Entomobryidae) based on mitochondrial genomes. ZOOL SCR 2020. [DOI: 10.1111/zsc.12408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nerivânia Nunes Godeiro
- Department of Botany and Zoology Biosciences Center Federal University of Rio Grande do Norte Natal Brazil
- Department of Entomology College of Plant Protection Nanjing Agricultural University Nanjing China
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - George Pacheco
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Shanlin Liu
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Beijing Advanced Innovation Center for Food Nutrition and Human Health College of Plant Protection China Agricultural University Beijing China
| | - Nikolas Gioia Cipola
- Laboratório de Sistemática e Ecologia de Invertebrados do Solo Instituto Nacional de Pesquisas da Amazônia—INPA CPEN Manaus Brazil
| | | | - Feng Zhang
- Department of Entomology College of Plant Protection Nanjing Agricultural University Nanjing China
| | | | - Bruno Cavalcante Bellini
- Department of Botany and Zoology Biosciences Center Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
8
|
Manni M, Simao FA, Robertson HM, Gabaglio MA, Waterhouse RM, Misof B, Niehuis O, Szucsich NU, Zdobnov EM. The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations. Genome Biol Evol 2020; 12:3534-3549. [PMID: 31778187 PMCID: PMC6938034 DOI: 10.1093/gbe/evz260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Marco A Gabaglio
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Switzerland
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany
| | | | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| |
Collapse
|
9
|
Miller SW, Movsesyan A, Zhang S, Fernández R, Posakony JW. Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway. eLife 2019; 8:48115. [PMID: 31545167 PMCID: PMC6777938 DOI: 10.7554/elife.48115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP), indirectly. Hairless is present only in the Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive function. We show that Su(H) from a wide array of arthropods, molluscs, and annelids includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is ancestral in the protostomes. How did Hairless come to replace this ancestral paradigm? Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a component of the NuRD complex. Sequence comparison and widely conserved microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an ancestral MTA gene.
Collapse
Affiliation(s)
- Steven W Miller
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Artem Movsesyan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Sui Zhang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - James W Posakony
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
10
|
Nunes RC, Godeiro NN, Pacheco G, Liu S, Gilbert MTP, Alvarez‐Valin F, Zhang F, Bellini BC. The discovery of Neotropical
Lepidosira
(Collembola, Entomobryidae) and its systematic position. ZOOL SCR 2019. [DOI: 10.1111/zsc.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rudy C. Nunes
- Department of Botany and Zoology, Biosciences Center Federal University of Rio Grande do Norte Natal Brazil
- Federal Institute of Education, Science and Technology of Piauí Pedro II Brazil
| | - Nerivânia N. Godeiro
- Department of Botany and Zoology, Biosciences Center Federal University of Rio Grande do Norte Natal Brazil
| | - George Pacheco
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Shanlin Liu
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- BGI‐Shenzhen Shenzhen China
| | | | - Fernando Alvarez‐Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias Universidad de la República Montevideo Uruguay
| | - Feng Zhang
- Department of Entomology, College of Plant Protection Nanjing Agricultural University Nanjing China
| | - Bruno C. Bellini
- Department of Botany and Zoology, Biosciences Center Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
11
|
Zhang F, Ding Y, Zhou QS, Wu J, Luo A, Zhu CD. A High-quality Draft Genome Assembly of Sinella curviseta: A Soil Model Organism (Collembola). Genome Biol Evol 2019; 11:521-530. [PMID: 30668671 PMCID: PMC6389355 DOI: 10.1093/gbe/evz013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Sinella curviseta, among the most widespread springtails (Collembola) in Northern Hemisphere, has often been treated as a model organism in soil ecology and environmental toxicology. However, little information on its genetic knowledge severely hinders our understanding of its adaptations to the soil habitat. We present the largest genome assembly within Collembola using ∼44.86 Gb (118X) of single-molecule real-time Pacific Bioscience Sequel sequencing. The final assembly of 599 scaffolds was ∼381.46 Mb with a N50 length of 3.28 Mb, which captured 95.3% complete and 1.5% partial arthropod Benchmarking Universal Single-Copy Orthologs (n = 1066). Transcripts and circularized mitochondrial genome were also assembled. We predicted 23,943 protein-coding genes, of which 83.88% were supported by transcriptome-based evidence and 82.49% matched protein records in UniProt. In addition, we also identified 222,501 repeats and 881 noncoding RNAs. Phylogenetic reconstructions for Collembola support Tomoceridae sistered to the remaining Entomobryomorpha with the position of Symphypleona not fully resolved. Gene family evolution analyses identified 9,898 gene families, of which 156 experienced significant expansions or contractions. Our high-quality reference genome of S. curviseta provides the genetic basis for future investigations in evolutionary biology, soil ecology, and ecotoxicology.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University.,Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University
| | - Qing-Song Zhou
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences under Ministry of Environmental Protection, Nanjing, China
| | - Arong Luo
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Kampfraath AA, Klasson L, Anvar SY, Vossen RHAM, Roelofs D, Kraaijeveld K, Ellers J. Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model. BMC Genomics 2019; 20:106. [PMID: 30727958 PMCID: PMC6364476 DOI: 10.1186/s12864-019-5492-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-associated wFol. In this study, we investigate possible processes underlying this genome expansion by comparing a re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to parthenogenesis induction (PI). Results Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential link to PI, we assembled the genome of an additional PI strain, wLcla. Comparisons between four PI Wolbachia, including wFol and wLcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for further investigation. Conclusions The strong similarities in genome content of wFol and its host, as well as the correlation between host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate endosymbionts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A A Kampfraath
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - L Klasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - S Y Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - D Roelofs
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Kraaijeveld
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Robertson HM. Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:227-242. [PMID: 30312552 DOI: 10.1146/annurev-ento-020117-043322] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The evolutionary origins of the three major families of chemoreceptors in arthropods-the odorant receptor (OR), gustatory receptor (GR), and ionotropic receptor (IR) families-occurred at the base of the Insecta, Animalia, and Protostomia, respectively. Comparison of receptor family sizes across arthropods reveals a generally positive correlation with their widely disparate complexity of chemical ecology. Closely related species reveal the ongoing processes of gene family evolution, including gene duplication, divergence, pseudogenization, and loss, that mediate these larger patterns. Sets of paralogous receptors within species reveal positive selection on amino acids in regions likely to contribute to ligand binding and specificity. Ligands of many ORs and some GRs and IRs have been identified; however, ligand identification for many more chemoreceptors is needed, as are structures for the OR/GR superfamily, to improve our understanding of the molecular evolution of these ecologically important receptors in arthropods.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
14
|
Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes. BMC Evol Biol 2018; 18:194. [PMID: 30563447 PMCID: PMC6299612 DOI: 10.1186/s12862-018-1302-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. Results Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened βα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. Conclusions The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer. Electronic supplementary material The online version of this article (10.1186/s12862-018-1302-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Katz AD, Taylor SJ, Davis MA. At the confluence of vicariance and dispersal: Phylogeography of cavernicolous springtails (Collembola: Arrhopalitidae, Tomoceridae) codistributed across a geologically complex karst landscape in Illinois and Missouri. Ecol Evol 2018; 8:10306-10325. [PMID: 30397468 PMCID: PMC6206200 DOI: 10.1002/ece3.4507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023] Open
Abstract
The processes of vicariance and dispersal are central to our understanding of diversification, yet determining the factors that influence these processes remains a significant challenge in evolutionary biology. Caves offer ideal systems for examining the mechanisms underlying isolation, divergence, and speciation. Intrinsic ecological differences among cavernicolous organisms, such as the degree of cave dependence, are thought to be major factors influencing patterns of genetic isolation in caves. Using a comparative phylogeographic approach, we employed mitochondrial and nuclear markers to assess the evolutionary history of two ecologically distinct groups of terrestrial cave-dwelling springtails (Collembola) in the genera Pygmarrhopalites (Arrhopalitidae) and Pogonognathellus (Tomoceridae) that are codistributed in caves throughout the Salem Plateau-a once continuous karst region, now bisected by the Mississippi River Valley in Illinois and Missouri. Contrasting phylogeographic patterns recovered for troglobiotic Pygmarrhopalites sp. and eutroglophilic Pogonognathellus sp. suggests that obligate associations with cave habitats can restrict dispersal across major geographic barriers such as rivers and valleys, but may also facilitate subterranean dispersal between neighboring cave systems. Pygmarrhopalites sp. populations spanning the Mississippi River Valley were estimated to have diverged 2.9-4.8 Ma, which we attribute to vicariance resulting from climatic and geological processes involved in Mississippi River Valley formation beginning during the late Pliocene/early Pleistocene. Lastly, we conclude that the detection of many deeply divergent, morphologically cryptic, and microendemic lineages highlights our poor understanding of microarthropod diversity in caves and exposes potential conservation concerns.
Collapse
Affiliation(s)
- Aron D. Katz
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Steven J. Taylor
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Present address:
Office of General StudiesColorado CollegeColorado SpringsColoradoUSA
| | - Mark A. Davis
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| |
Collapse
|
16
|
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, Johnson BR. The origin of the odorant receptor gene family in insects. eLife 2018; 7:e38340. [PMID: 30063003 PMCID: PMC6080948 DOI: 10.7554/elife.38340] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023] Open
Abstract
The origin of the insect odorant receptor (OR) gene family has been hypothesized to have coincided with the evolution of terrestriality in insects. Missbach et al. (2014) suggested that ORs instead evolved with an ancestral OR co-receptor (Orco) after the origin of terrestriality and the OR/Orco system is an adaptation to winged flight in insects. We investigated genomes of the Collembola, Diplura, Archaeognatha, Zygentoma, Odonata, and Ephemeroptera, and find ORs present in all insect genomes but absent from lineages predating the evolution of insects. Orco is absent only in the ancestrally wingless insect lineage Archaeognatha. Our new genome sequence of the zygentoman firebrat Thermobia domestica reveals a full OR/Orco system. We conclude that ORs evolved before winged flight, perhaps as an adaptation to terrestriality, representing a key evolutionary novelty in the ancestor of all insects, and hence a molecular synapomorphy for the Class Insecta.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and EcologyCenter for Population Biology, University of California, DavisDavisUnited States
| | - Hugh M Robertson
- Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wei Lin
- Department of Entomology and NematologyUniversity of California, DavisDavisUnited States
| | - Ratnasri Pothula
- Department of Entomology and Plant PathologyUniversity of TennesseeKnoxvilleUnited States
| | | | | | - Brian R Johnson
- Department of Entomology and NematologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
17
|
Wybouw N, Van Leeuwen T, Dermauw W. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. INSECT MOLECULAR BIOLOGY 2018; 27:333-351. [PMID: 29377385 DOI: 10.1111/imb.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites.
Collapse
Affiliation(s)
- N Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - T Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - W Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Wu C, Twort VG, Crowhurst RN, Newcomb RD, Buckley TR. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction. BMC Genomics 2017; 18:884. [PMID: 29145825 PMCID: PMC5691397 DOI: 10.1186/s12864-017-4245-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.
Collapse
Affiliation(s)
- Chen Wu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Victoria G. Twort
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- Department of Biology, Lund University, Lund, Sweden
| | - Ross N. Crowhurst
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Thomas R. Buckley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
| |
Collapse
|