1
|
Westerberg I, Ament-Velásquez SL, Vogan AA, Johannesson H. Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations. Mob DNA 2024; 15:1. [PMID: 38218923 PMCID: PMC10787394 DOI: 10.1186/s13100-023-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.
Collapse
Affiliation(s)
- Ivar Westerberg
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.
| | - Hanna Johannesson
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden.
| |
Collapse
|
2
|
Wu G, Miyauchi S, Morin E, Kuo A, Drula E, Varga T, Kohler A, Feng B, Cao Y, Lipzen A, Daum C, Hundley H, Pangilinan J, Johnson J, Barry K, LaButti K, Ng V, Ahrendt S, Min B, Choi IG, Park H, Plett JM, Magnuson J, Spatafora JW, Nagy LG, Henrissat B, Grigoriev IV, Yang ZL, Xu J, Martin FM. Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. THE NEW PHYTOLOGIST 2022; 233:1383-1400. [PMID: 34767630 DOI: 10.1111/nph.17858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.
Collapse
Affiliation(s)
- Gang Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
| | - Bang Feng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Yang Cao
- Yunnan Institute of Tropic Crops, Jinghong, Yunnan, 666100, China
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Christopher Daum
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Hope Hundley
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Vivian Ng
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
| | - Byoungnam Min
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841, Seoul, Korea
| | - Hongjae Park
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jon Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (USC1408), INRAE, Marseille, 13009, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy (DOE) Joint Genome Institute (JGI), Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, 650201, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54 280, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
3
|
Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021; 49:9077-9096. [PMID: 34417604 PMCID: PMC8450103 DOI: 10.1093/nar/gkab688] [Citation(s) in RCA: 660] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
tRNAscan-SE has been widely used for transfer RNA (tRNA) gene prediction for over twenty years, developed just as the first genomes were decoded. With the massive increase in quantity and phylogenetic diversity of genomes, the accurate detection and functional prediction of tRNAs has become more challenging. Utilizing a vastly larger training set, we created nearly one hundred specialized isotype- and clade-specific models, greatly improving tRNAscan-SE’s ability to identify and classify both typical and atypical tRNAs. We employ a new comparative multi-model strategy where predicted tRNAs are scored against a full set of isotype-specific covariance models, allowing functional prediction based on both the anticodon and the highest-scoring isotype model. Comparative model scoring has also enhanced the program's ability to detect tRNA-derived SINEs and other likely pseudogenes. For the first time, tRNAscan-SE also includes fast and highly accurate detection of mitochondrial tRNAs using newly developed models. Overall, tRNA detection sensitivity and specificity is improved for all isotypes, particularly those utilizing specialized models for selenocysteine and the three subtypes of tRNA genes encoding a CAU anticodon. These enhancements will provide researchers with more accurate and detailed tRNA annotation for a wider variety of tRNAs, and may direct attention to tRNAs with novel traits.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Brian Y Lin
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Allysia J Mak
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Draft Genome Sequence of the Ectomycorrhizal Fungus Astraeus odoratus from Northern Thailand. Microbiol Resour Announc 2021; 10:e0004421. [PMID: 34197189 PMCID: PMC8248864 DOI: 10.1128/mra.00044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We report the draft genome sequence of Astraeus odoratus, an edible ectomycorrhizal fungus from northern Thailand. The assembled genome has a size of 45.1 Mb and 13,403 annotated protein-coding genes. This reference genome will provide a better understanding of the biology of mushroom-forming ectomycorrhizal fungi in the family Diplocystidiaceae.
Collapse
|
5
|
Tian F, Li C, Li Y. Genomic Analysis of Sarcomyxa edulis Reveals the Basis of Its Medicinal Properties and Evolutionary Relationships. Front Microbiol 2021; 12:652324. [PMID: 34276589 PMCID: PMC8281127 DOI: 10.3389/fmicb.2021.652324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Yuanmo [Sarcomyxa edulis (Y.C. Dai, Niemelä & G.F. Qin) T. Saito, Tonouchi & T. Harada] is an important edible and medicinal mushroom endemic to Northeastern China. Here we report the de novo sequencing and assembly of the S. edulis genome using single-molecule real-time sequencing technology. The whole genome was approximately 35.65 Mb, with a G + C content of 48.31%. Genome assembly generated 41 contigs with an N50 length of 1,772,559 bp. The genome comprised 9,364 annotated protein-coding genes, many of which encoded enzymes involved in the modification, biosynthesis, and degradation of glycoconjugates and carbohydrates or enzymes predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I polyketide, siderophore, and fatty acids, which are responsible for the pharmacodynamic activities of S. edulis. We also identified genes encoding 1,3-β-glucan synthase and endo-1,3(4)-β-glucanase, which are involved in polysaccharide and uridine diphosphate glucose biosynthesis. Phylogenetic and comparative analyses of Basidiomycota fungi based on a single-copy orthologous protein indicated that the Sarcomyxa genus is an independent group that evolved from the Pleurotaceae family. The annotated whole-genome sequence of S. edulis can serve as a reference for investigations of bioactive compounds with medicinal value and the development and commercial production of superior S. edulis varieties.
Collapse
Affiliation(s)
- Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
7
|
Wu P, Bao Z, Tu W, Li L, Xiong C, Jin X, Li P, Gui M, Huang W, Li Q. The mitogenomes of two saprophytic Boletales species ( Coniophora) reveals intron dynamics and accumulation of plasmid-derived and non-conserved genes. Comput Struct Biotechnol J 2020; 19:401-414. [PMID: 33489009 PMCID: PMC7804350 DOI: 10.1016/j.csbj.2020.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/02/2023] Open
Abstract
The order Boletales is a group of fungi with complex life styles, which include saprophytic and ectomycorrhizal mushroom-forming fungi. In the present study, the complete mitogenomes of two saprophytic Boletales species, Coniophora olivacea, and C. puteana, were assembled and compared with mitogenomes of ectomycorrhizal Boletales. Both mitogenomes comprised circular DNA molecules with sizes of 78,350 bp and 79,655 bp, respectively. Comparative mitogenomic analysis indicated that the two saprophytic Boletales species contained more plasmid-derived (7 on average) and unknown functional genes (12 on average) than the four ectomycorrhizal Boletales species previously reported. In addition, the core protein coding genes, nad2 and rps3, were found to be subjected to positive selection pressure between some Boletales species. Frequent intron gain/loss events were detected in Boletales and Basidiomycetes, and several novel intron classes were found in two Coniophora species. A total of 33 introns were detected in C. olivacea, and most were found to have undergone contraction in the C. olivacea mitogenome. Mitochondrial genes of Coniophora species were found to have undergone large-scale gene rearrangements, and the accumulation of intra-genomic repeats in the mitogenome was considered as one of the main contributing factors. Based on combined mitochondrial gene sets, we obtained a well-supported phylogenetic tree for 76 Basidiomycetes, demonstrating the utility of mitochondrial gene analysis for inferring Basidiomycetes phylogeny. The study served as the first report on the mitogenomes of the family Coniophorineae, which will help to understand the origin and evolution patterns of Boletales species with complex lifestyles.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Distribution, Characteristics, and Regulatory Potential of Long Noncoding RNAs in Brown-Rot Fungi. Int J Genomics 2019; 2019:9702342. [PMID: 31192251 PMCID: PMC6525899 DOI: 10.1155/2019/9702342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs have been thoroughly studied in plants, animals, and yeasts, where they play important roles as regulators of transcription. Nevertheless, almost nothing is known about their presence and characteristics in filamentous fungi, especially in basidiomycetes. In the present study, we have carried out an exhaustive annotation and characterization of lncRNAs in two lignin degrader basidiomycetes, Coniophora puteana and Serpula lacrymans. We identified 2,712 putative lncRNAs in the former and 2,242 in the latter, mainly originating from intergenic locations of transposon-sparse genomic regions. The lncRNA length, GC content, expression levels, and stability of the secondary structure differ from coding transcripts but are similar in these two species and resemble that of other eukaryotes. Nevertheless, they lack sequence conservation. Also, we found that lncRNAs are transcriptionally regulated in the same proportion as genes when the fungus actively decomposes soil organic matter. Finally, up to 7% of the upstream gene regions of Coniophora puteana and Serpula lacrymans are transcribed and produce lncRNAs. The study of expression trends in these gene-lncRNA pairs uncovered groups with similar and opposite transcriptional profiles which may be the result of cis-transcriptional regulation.
Collapse
|
9
|
An Q, Wu XJ, Dai YC. Comparative genomics of 40 edible and medicinal mushrooms provide an insight into the evolution of lignocellulose decomposition mechanisms. 3 Biotech 2019; 9:157. [PMID: 30944804 DOI: 10.1007/s13205-019-1689-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/19/2019] [Indexed: 11/28/2022] Open
Abstract
Diversity comparison and phylogenetic analyses of carbohydrate-active enzymes (CAZymes), auxiliary activities (AAs) and cytochromes P450 among 40 fungi, which are based on different nutritional pathways, help clarify and explain their divergence and improvement of various life-styles. Molecular clock analyses allow us to understand the evolutionary and developmental rules in decomposition gene families. Our results suggested that fungi in different ecological types acquired an obvious preference on specific decomposing gene families during evolutionary selection. White rot and litter saprotrophic fungi possessed more complete types of varied degradation gene families and were superior in quantities. With evolution and development of lignocellulose decomposition mechanism, certain families (like CBM1, GH6, GH7, GH10, and CYP53) disappeared in brown rot fungi and symbiotic fungi. In addition, the earlier time of phylogenetic divergence determined the more integrated and larger decomposition families. And various gains and losses in gene quantity of varied decomposition families led in particularly phylogenetic clades or nodes, then accelerated in forming varied ecotypes of species.
Collapse
Affiliation(s)
- Qi An
- 1Institute of Microbiology, Beijing Forestry University, Beijing, 100083 People's Republic of China
- 2Edible and Medicinal Fungi Research and Development Center, Universities/Colleges in Hebei Province, Langfang Normal University, Langfang, 065000 Hebei People's Republic of China
| | - Xue-Jun Wu
- 1Institute of Microbiology, Beijing Forestry University, Beijing, 100083 People's Republic of China
| | - Yu-Cheng Dai
- 1Institute of Microbiology, Beijing Forestry University, Beijing, 100083 People's Republic of China
- 3Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, 35 Qinghuadong Road, Haidian District, Beijing, 100083 People's Republic of China
| |
Collapse
|
10
|
Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 2018; 46:1431-1447. [DOI: 10.1042/bst20170549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.
Collapse
|
11
|
Rao S, Sharda S, Oddi V, Nandineni MR. The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum. Front Microbiol 2018; 9:2367. [PMID: 30337918 PMCID: PMC6180176 DOI: 10.3389/fmicb.2018.02367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled us to study its genome architecture by characterising the repetitive sequences like transposable elements (TEs) and simple sequence repeats (SSRs), which constituted 4.9 and 0.38% of the assembled genome, respectively. The comparative analysis among different Colletotrichum species revealed the extensive repeat rich regions, dominated by Gypsy superfamily of long terminal repeats (LTRs), and the differential composition of SSRs in their genomes. Our study revealed a recent burst of LTR amplification in C. truncatum, C. higginsianum, and C. scovillei. TEs in C. truncatum were significantly associated with secretome, effectors and genes in secondary metabolism clusters. Some of the TE families in C. truncatum showed cytosine to thymine transitions indicative of repeat-induced point mutation (RIP). C. orbiculare and C. graminicola showed strong signatures of RIP across their genomes and "two-speed" genomes with extensive AT-rich and gene-sparse regions. Comparative genomic analyses of Colletotrichum species provided an insight into the species-specific SSR profiles. The SSRs in the coding and non-coding regions of the genome revealed the composition of trinucleotide repeat motifs in exons with potential to alter the translated protein structure through amino acid repeats. This is the first genome-wide study of TEs and SSRs in C. truncatum and their comparative analysis with six other Colletotrichum species, which would serve as a useful resource for future research to get insights into the potential role of TEs in genome expansion and evolution of Colletotrichum fungi and for development of SSR-based molecular markers for population genomic studies.
Collapse
Affiliation(s)
- Soumya Rao
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Saphy Sharda
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Madhusudan R. Nandineni
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|