1
|
Tao L, Liu H, Adeola AC, Xie HB, Feng ST, Zhang YP. The effects of runs-of-homozygosity on pig domestication and breeding. BMC Genomics 2025; 26:6. [PMID: 39762732 PMCID: PMC11702194 DOI: 10.1186/s12864-024-11189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression. RESULTS Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits. Our study revealed differential ROH landscapes during domestication and artificial selection of Eurasian pigs. We observed associations between ROH burden and phenotypic traits such as body conformation and susceptibility to diseases like scrotal hernia. By examining associations of whole-genome and regional ROH burden with gene expression, we identified specific genes and pathways affected by inbreeding depression. Associations of regional ROH burden with gene expression also enabled the discovery of novel regulatory elements. Lastly, we inferred recessive lethal mutations by examining depletion of ROH in an inbred population with relatively small sample size, following by fine mapping with sequencing data. CONCLUSIONS These findings suggested that both phenotypic and genetic variations have been reshaped by inbreeding, and provided insights to the genetic mechanisms underlying inbreeding depression.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Adeniyi C Adeola
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hai-Bing Xie
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shu-Tang Feng
- Beijing Grand-Life Science and Technology Company, Beijing, 102206, China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Bolarin A, Berndtson J, Tejerina F, Cobos S, Pomarino C, D'Alessio F, Blackburn H, Kaeoket K. Boar semen cryopreservation: State of the art, and international trade vision. Anim Reprod Sci 2024; 269:107496. [PMID: 38763787 DOI: 10.1016/j.anireprosci.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Biosecurity is a major concern in the global pig production. The separation in time of semen collection, processing and insemination in the pig farm is a few days for chilled semen but it can be indefinite when using cryopreserved semen. Field fertility results of boar cryopreserved semen are close to chilled semen, which makes it a valuable resource for the establishment of semen genebanks, long-distance semen trade, and the implementation of other technologies such as the sex-sorted semen. But cryopreserved semen is far from being routine in pig farms. The most recent research efforts to facilitate its implementation include the use of additives before freezing, or in the thawing extender. Long-term preserved semen trade is a biosecurity challenge. To harmonize international trade of germplasm, the World Organization of Animal Health (WOAH) established a regulatory framework for all member countries. The present paper aims to review the latest advances of boar semen cryopreservation with special focus on the benefits of its inclusion as a routine tool in the pig industry. We also review recently reported field fertility results of cryopreserved semen, its international trade compared to chilled semen, and the regulatory framework involved. Boar cryopreserved semen is a valuable tool to control biosecurity risk, implement other technologies, and facilitate international trade. Research already demonstrated good field fertility results, but it still represents less than 0.1 % of the international trade. As boar cryopreserved semen gets closer to implementation, the correspondent authorities are reviewing the trade rules.
Collapse
Affiliation(s)
| | | | - F Tejerina
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Livestock Inputs, Madrid, Spain
| | - S Cobos
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Health Agreements and Border Control, Madrid, Spain
| | - C Pomarino
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Animal Health and Hygiene and Traceability, Madrid, Spain
| | - F D'Alessio
- World Organization for Animal Health (OIE), Paris, France
| | - H Blackburn
- USDA-ARS, National Animal Germplasm Program, Fort Collins, CO, United States
| | - K Kaeoket
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon-Pathom 73170, Thailand
| |
Collapse
|
3
|
Besnard F, Guintard A, Grohs C, Guzylack-Piriou L, Cano M, Escouflaire C, Hozé C, Leclerc H, Buronfosse T, Dutheil L, Jourdain J, Barbat A, Fritz S, Deloche MC, Remot A, Gaussères B, Clément A, Bouchier M, Contat E, Relun A, Plassard V, Rivière J, Péchoux C, Vilotte M, Eche C, Kuchly C, Charles M, Boulling A, Viard G, Minéry S, Barbey S, Birbes C, Danchin-Burge C, Launay F, Mattalia S, Allais-Bonnet A, Ravary B, Millemann Y, Guatteo R, Klopp C, Gaspin C, Iampietro C, Donnadieu C, Milan D, Arcangioli MA, Boussaha M, Foucras G, Boichard D, Capitan A. Massive detection of cryptic recessive genetic defects in dairy cattle mining millions of life histories. Genome Biol 2024; 25:248. [PMID: 39343954 PMCID: PMC11441225 DOI: 10.1186/s13059-024-03384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. RESULTS We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. CONCLUSIONS The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.
Collapse
Affiliation(s)
- Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- IDELE, 149 Rue de Bercy, 75012, Paris, France.
| | - Ana Guintard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Margarita Cano
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Clémentine Escouflaire
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Hélène Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | | | - Lucie Dutheil
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Jeanlin Jourdain
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Marie-Christine Deloche
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Aude Remot
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Adèle Clément
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Marion Bouchier
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Elise Contat
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Anne Relun
- Oniris, INRAE, BIOEPAR, 44300, Nantes, France
| | | | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, 78350, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Camille Eche
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Guillaume Viard
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | - Sarah Barbey
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | - Clément Birbes
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | | | - Frédéric Launay
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | | | - Aurélie Allais-Bonnet
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | | | | | - Christophe Klopp
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Denis Milan
- GenPhySE, Université Fédérale de Toulouse, INRAE, INPT, ENVT, 31320, Castanet-Tolosan, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- ELIANCE, 75012, Paris, France.
| |
Collapse
|
4
|
Qiao J, Xu M, Xu F, Che Z, Han P, Dai X, Miao N, Zhu M. Identification of SNPs and Candidate Genes Associated with Monocyte/Lymphocyte Ratio and Neutrophil/Lymphocyte Ratio in Duroc × Erhualian F 2 Population. Int J Mol Sci 2024; 25:9745. [PMID: 39273692 PMCID: PMC11396299 DOI: 10.3390/ijms25179745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the pig immune function is crucial for disease-resistant breeding and potentially for human health research due to shared immune system features. Immune cell ratios, like monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), offer a more comprehensive view of immune status compared to individual cell counts. However, research on pig immune cell ratios remains limited. This study investigated MLR and NLR in a Duroc × Erhualian F2 resource population. Heritability analysis revealed high values (0.649 and 0.688 for MLR and NLR, respectively), suggesting a strong genetic component. Furthermore, we employed an ensemble-like GWAS (E-GWAS) strategy and functional annotation analysis to identify 11 MLR-associated and 6 NLR-associated candidate genes. These genes were significantly enriched in immune-related biological processes. These findings provide novel genetic markers and candidate genes associated with porcine immunity, thereby providing valuable insights for addressing biosecurity and animal welfare concerns in the pig industry.
Collapse
Affiliation(s)
- Jiakun Qiao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghang Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangjun Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxuan Che
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Dai
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Miao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Wu P, Ji X, Chai J, Chen L, Wang K, Wang S, Zhang L, Zhang L, Chen S, Guo Z, Wang J, Tang G. CYP24A1 is associated with fetal mummification in pigs. Theriogenology 2023; 211:105-114. [PMID: 37603936 DOI: 10.1016/j.theriogenology.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Mummified piglets are among the leading causes of fertility loss and severely hamper reproductive performance in pigs. However, the contributions of genomic variation to the emergence of mummified piglets (MUM) have rarely been studied. This study aims to (1) elucidate the genetic architecture of MUM in sows of parity 1 - 3 using a single-step genome-wide association study (ssGWAS). The ssGWAS involved genotyping-by-sequencing of Large White and Landrace pig breeds. (2) Explore the biological role of the candidate genes at the cellular level. A total of 185 and 48 genome-wide significant SNPs are associated with MUM in Large White and Landrace pigs, explaining 0.01-36.52% genetic variance for different significant loci, respectively. All the significant SNPs are parity-specific, and the numerous, consecutive significant loci likely generated the nine significant peaks in different parities. Multiple candidate genes (including CYP24A1, FBXO30, and ARHGEF28) are associated with fetal congenital and maternal diseases. Collectively, CYP24A1 regulation contributes to steady-state levels of embryo development genes. CYP24A1 is involved in reproduction and, immune and gestational disorders. Thus, it is associated with known newborn death traits and MUM in Large White sows. Altogether, these results improve the current understanding of the genetic architecture of MUM and expand the knowledge on genetic variations for selecting against mummified piglets in pig breeding.
Collapse
Affiliation(s)
- Pingxian Wu
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Li Chen
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Liang Zhang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Lijuan Zhang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Siqing Chen
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Zongyi Guo
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, Chongqing, China; National Center of Technology Innovation for Pigs, Rongchang, 402460, Chongqing, China.
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Reich P, Falker-Gieske C, Pook T, Tetens J. Development and validation of a horse reference panel for genotype imputation. Genet Sel Evol 2022; 54:49. [PMID: 35787788 PMCID: PMC9252005 DOI: 10.1186/s12711-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genotype imputation is a cost-effective method to generate sequence-level genotypes for a large number of animals. Its application can improve the power of genomic studies, provided that the accuracy of imputation is sufficiently high. The purpose of this study was to develop an optimal strategy for genotype imputation from genotyping array data to sequence level in German warmblood horses, and to investigate the effect of different factors on the accuracy of imputation. Publicly available whole-genome sequence data from 317 horses of 46 breeds was used to conduct the analyses. Results Depending on the size and composition of the reference panel, the accuracy of imputation from medium marker density (60K) to sequence level using the software Beagle 5.1 ranged from 0.64 to 0.70 for horse chromosome 3. Generally, imputation accuracy increased as the size of the reference panel increased, but if genetically distant individuals were included in the panel, the accuracy dropped. Imputation was most precise when using a reference panel of multiple but related breeds and the software Beagle 5.1, which outperformed the other two tested computer programs, Impute 5 and Minimac 4. Genome-wide imputation for this scenario resulted in a mean accuracy of 0.66. Stepwise imputation from 60K to 670K markers and subsequently to sequence level did not improve the accuracy of imputation. However, imputation from higher density (670K) was considerably more accurate (about 0.90) than from medium density. Likewise, imputation in genomic regions with a low marker coverage resulted in a reduced accuracy of imputation. Conclusions The accuracy of imputation in horses was influenced by the size and composition of the reference panel, the marker density of the genotyping array, and the imputation software. Genotype imputation can be used to extend the limited amount of available sequence-level data from horses in order to boost the power of downstream analyses, such as genome-wide association studies, or the detection of embryonic lethal variants. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00740-8.
Collapse
Affiliation(s)
- Paula Reich
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| | - Torsten Pook
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
7
|
Häfliger IM, Spengeler M, Seefried FR, Drögemüller C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci Rep 2022; 12:5435. [PMID: 35361830 PMCID: PMC8971413 DOI: 10.1038/s41598-022-09403-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Mendelian variants can determine both insemination success and neonatal survival and thus influence fertility and rearing success of cattle. We present 24 deficient homozygous haplotype regions in the Holstein population of Switzerland and provide an overview of the previously identified haplotypes in the global Holstein breed. This study encompasses massive genotyping, whole-genome sequencing (WGS) and phenotype association analyses. We performed haplotype screenings on almost 53 thousand genotyped animals including 114 k SNP data with two different approaches. We revealed significant haplotype associations to several survival, birth and fertility traits. Within haplotype regions, we mined WGS data of hundreds of bovine genomes for candidate causal variants, which were subsequently evaluated by using a custom genotyping array in several thousand breeding animals. With this approach, we confirmed the known deleterious SMC2:p.Phe1135Ser missense variant associated with Holstein haplotype (HH) 3. For two previously reported deficient homozygous haplotypes that show negative associations to female fertility traits, we propose candidate causative loss-of-function variants: the HH13-related KIR2DS1:p.Gln159* nonsense variant and the HH21-related NOTCH3:p.Cys44del deletion. In addition, we propose the RIOX1:p.Ala133_Glu142del deletion as well as the PCDH15:p.Leu867Val missense variant to explain the unexpected low number of homozygous haplotype carriers for HH25 and HH35, respectively. In conclusion, we demonstrate that with mining massive SNP data in combination with WGS data, we can map several haplotype regions and unravel novel recessive protein-changing variants segregating at frequencies of 1 to 5%. Our findings both confirm previously identified loci and expand the spectrum of undesired alleles impairing reproduction success in Holstein cattle, the world's most important dairy breed.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
8
|
Investigation of the Genetic Architecture of Pigs Subjected to Breeding Intensification. Genes (Basel) 2022; 13:genes13020197. [PMID: 35205240 PMCID: PMC8871947 DOI: 10.3390/genes13020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Pigs are strategically important animals for the agricultural industry. An assessment of genetic differentiation between pigs, undergone and not undergone to selection intensification, is of particular interest. Our research was conducted on two groups of Large White pigs grown on the same farm but in different years. A total of 165 samples were selected with 78 LW_А (n = 78, the Russian selection) and LW_B (n = 87, a commercial livestock). For genotyping, we used GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc, San Diego, CA, USA). To define breeding characteristics of selection, we used smoothing FST and segment identification of HBD (Homozygous-by-Descent). The results of smoothing FST showed 20 areas of a genome with strong ejection regions of the genome located on all chromosomes except SSC2, SSC3, and SSC8. The average realized autozygosity in Large White pigs of native selection was in (LW_A)—0.21, in LW_В—0.29. LW_А showed 13,338 HBD segments, 171 per one animal, and LW_B—15,747 HBD segments, 181 per one animal. The ejections found by the smoothing FST method were partially localized in the HBD regions. In these areas, the genes ((NCBP1, PLPPR1, GRIN3A, NBEA, TRPC4, HS6ST3, NALCN, SMG6, TTC3, KCNJ6, IKZF2, OBSL1, CARD10, ETV6, VWF, CCND2, TSPAN9, CDH13, CEP128, SERPINA11, PIK3CG, COG5, BCAP29, SLC26A4) were defined. The revealed genes can be of special interest for further studying their influence on an organism of an animal since they can act as candidate genes for selection-significant traits.
Collapse
|
9
|
Häfliger IM, Seefried FR, Spengeler M, Drögemüller C. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants that impair reproductive success. Genet Sel Evol 2021; 53:95. [PMID: 34915862 PMCID: PMC8675516 DOI: 10.1186/s12711-021-00686-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background This study was carried out on the two Braunvieh populations reared in Switzerland, the dairy Brown Swiss (BS) and the dual-purpose Original Braunvieh (OB). We performed a genome-wide analysis of array data of trios (sire, dam, and offspring) from the routine genomic selection to identify candidate regions showing missing homozygosity and phenotypic associations with five fertility, ten birth, and nine growth-related traits. In addition, genome-wide single SNP regression studies based on 114,890 single nucleotide polymorphisms (SNPs) for each of the two populations were performed. Furthermore, whole-genome sequencing data of 430 cattle including 70 putative haplotype carriers were mined to identify potential candidate variants that were validated by genotyping the current population using a custom array. Results Using a trio-based approach, we identified 38 haplotype regions for BS and five for OB that segregated at low to moderate frequencies. For the BS population, we confirmed two known haplotypes, BH1 and BH2. Twenty-four variants that potentially explained the missing homozygosity and associated traits were detected, in addition to the previously reported TUBD1:p.His210Arg variant associated with BH2. For example, for BS we identified a stop-gain variant (p.Arg57*) in the MRPL55 gene in the haplotype region on chromosome 7. This region is associated with the ‘interval between first and last insemination’ trait in our data, and the MRPL55 gene is known to be associated with early pregnancy loss in mice. In addition, we discuss candidate missense variants in the CPT1C, MARS2, and ACSL5 genes for haplotypes mapped in BS. In OB, we highlight a haplotype region on chromosome 19, which is potentially caused by a frameshift variant (p.Lys828fs) in the LIG3 gene, which is reported to be associated with early embryonic lethality in mice. Furthermore, we propose another potential causal missense variant in the TUBGCP5 gene for a haplotype mapped in OB. Conclusions We describe, for the first time, several haplotype regions that segregate at low to moderate frequencies and provide evidence of causality by trait associations in the two populations of Swiss Braunvieh. We propose a list of six protein-changing variants as potentially causing missing homozygosity. These variants need to be functionally validated and incorporated in the breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00686-3.
Collapse
Affiliation(s)
- Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland.
| | | | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
10
|
Shatokhin KS. Problems of mini-pig breeding. Vavilovskii Zhurnal Genet Selektsii 2021; 25:284-291. [PMID: 34901725 PMCID: PMC8627873 DOI: 10.18699/vj21.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
This article provides an overview of some problems of the breeding and reproduction of laboratory minipigs. The most obvious of these are the lack of centralized accounting of breeding groups, uniform selection standards
for reproduction and evaluation of breeding animals, as well as minimizing the accumulation of fitness-reducing
mutations and maintaining genetic diversity. According to the latest estimates, there are at least 30 breeding groups
of mini-pigs systematically used as laboratory animals in the world. Among them, there are both breed formations
represented by several colonies, and breeding groups consisting of a single herd. It was shown that the main selection
strategy is selection for the live weight of adults of 50–80 kg and the adaptation of animals to a specific type of biomedical experiments. For its implementation in the breeding of foreign mini-pigs, selection by live weight is practiced
at 140- and 154-day-old age. It was indicated that different herds of mini-pigs have their own breeding methods to
counteract inbred depression and maintain genetic diversity. Examples are the maximization of coat color phenotypes, the cyclical system of matching parent pairs, and the structuring of herds into subpopulations. In addition,
in the breeding of foreign mini-pigs, molecular genetic methods are used to monitor heterozygosity. Every effort is
made to keep the number of inbred crosses in the breeding of laboratory mini-pigs to a minimum, which is not always
possible due to their small number. It is estimated that to avoid close inbreeding, the number of breeding groups
should be at least 28 individuals, including boars of at least 4 genealogical lines and at least 4 families of sows. The
accumulation of genetic cargo in herds of mini-pigs takes place, but the harmful effect is rather the result of erroneous
decisions of breeders. Despite the fact that when breeding a number of mini-pigs, the goal was to complete the herds
with exclusively white animals, in most breeding groups there is a polymorphism in the phenotype of the coat color
Collapse
Affiliation(s)
- K S Shatokhin
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
11
|
Häfliger IM, Seefried FR, Drögemüller C. Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland. Animals (Basel) 2021; 11:3535. [PMID: 34944310 PMCID: PMC8698008 DOI: 10.3390/ani11123535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. We used 115,000 phased SNP data of almost 10 thousand cattle with pedigree data. This revealed evidence for 11 genomic regions of 1.17 Mb on average, with haplotypes (SH1 to SH11) showing a significant depletion in homozygosity and an allele frequency between 3.2 and 10.6%. For the proposed haplotypes, it was unfortunately not possible to evaluate associations with fertility traits as no corresponding data were available. For each haplotype region, possible candidate genes were listed based on their known function in development and disease. Subsequent mining of single-nucleotide variants and short indels in the genomes of 23 sequenced haplotype carriers allowed us to identify three perfectly linked candidate causative protein-changing variants: a SH5-related DIS3:p.Ile678fs loss-of-function variant, a SH8-related CYP2B6:p.Ile313Asn missense variant, and a SH9-related NUBPL:p.Ser143Tyr missense variant. None of these variants occurred in homozygous state in any of more than 5200 sequenced cattle of various breeds. Selection against these alleles in order to reduce reproductive failure and animal loss is recommended.
Collapse
Affiliation(s)
- Irene M. Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
12
|
Trevisoli PA, Moreira GCM, Boschiero C, Cesar ASM, Petrini J, Margarido GRA, Ledur MC, Mourão GB, Garrick D, Coutinho LL. A Missense Mutation in the MYBPH Gene Is Associated With Abdominal Fat Traits in Meat-Type Chickens. Front Genet 2021; 12:698163. [PMID: 34456973 PMCID: PMC8386115 DOI: 10.3389/fgene.2021.698163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Chicken is an important source of protein for human nutrition and a model system for growth and developmental biology. Although the genetic architecture of quantitative traits in meat-type chickens has been the subject of ongoing investigation, the identification of mutations associated with carcass traits of economic interest remains challenging. Therefore, our aim was to identify predicted deleterious mutation, which potentially affects protein function, and test if they were associated with carcass traits in chickens. For that, we performed a genome-wide association analysis (GWAS) for breast, thigh and drumstick traits in meat-type chickens and detected 19 unique quantitative trait loci (QTL). We then used: (1) the identified windows; (2) QTL for abdominal fat detected in a previous study with the same population and (3) previously obtained whole genome sequence data, to identify 18 predicted deleterious single nucleotide polymorphisms (SNPs) in those QTL for further association with breast, thigh, drumstick and abdominal fat traits. Using the additive model, a predicted deleterious SNP c.482C > T (SIFT score of 0.4) was associated (p-value < 0.05) with abdominal fat weight and percentage. This SNP is in the second exon of the MYBPH gene, and its allele frequency deviates from Hardy–Weinberg equilibrium. In conclusion, our study provides evidence that the c.482C > T SNP in the MYBPH gene is a putative causal mutation for fat deposition in meat-type chickens.
Collapse
Affiliation(s)
- Priscila Anchieta Trevisoli
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Gabriel Costa Monteiro Moreira
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Clarissa Boschiero
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Agri-Food Industry, Food and Nutrition Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Juliana Petrini
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Dorian Garrick
- School of Agriculture, Massey University, Wellington, New Zealand
| | - Luiz Lehmann Coutinho
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| |
Collapse
|
13
|
Identification of homozygous haplotypes carrying putative recessive lethal mutations that compromise fertility traits in French Lacaune dairy sheep. Genet Sel Evol 2021; 53:41. [PMID: 33932977 PMCID: PMC8088666 DOI: 10.1186/s12711-021-00634-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Homozygous recessive deleterious mutations can cause embryo/fetal or neonatal lethality, or genetic defects that affect female fertility and animal welfare. In livestock populations under selection, the frequency of such lethal mutations may increase due to inbreeding, genetic drift, and/or the positive pleiotropic effects of heterozygous carriers on selected traits. Results By scanning the genome of 19,102 Lacaune sheep using 50 k single nucleotide polymorphism (SNP) phased genotypes and pedigree data, we identified 11 Lacaune deficient homozygous haplotypes (LDHH1 to LDHH11) showing a highly significant deficit of homozygous animals ranging from 79 to 100%. These haplotypes located on chromosomes 3, 4, 13, 17 and 18, spanned regions from 1.2 to 3.0 Mb long with a frequency of heterozygous carriers between 3.7 and 12.1%. When we compared at-risk matings (between carrier rams and daughters of carrier rams) and safe matings, seven of the 11 haplotypes were associated with a significant alteration of two fertility traits, a reduced success of artificial insemination (LDHH1, 2, 8 and 9), and/or an increased stillbirth rate (LDHH3, 6, 8, 9, and 10). The 11 haplotypes were also tested for a putative selective advantage of heterozygous carrier rams based on their daughter yield deviation for six dairy traits (milk, fat and protein yields, fat and protein contents and lactation somatic cell score). LDHH1, 3, 4, 5, 7, 9 and 11 were associated with positive effects on at least one selected dairy trait, in particular milk yield. For each haplotype, the most probable candidate genes were identified based on their roles in lethality of mouse knock-out models and in mammalian genetic disorders. Conclusions Based on a reverse genetic strategy, we identified at least 11 haplotypes with homozygous deficiency segregating in French Lacaune dairy sheep. This strategy represents a first tool to limit at-risk matings in the Lacaune dairy selection scheme. We assume that most of the identified LDHH are in strong linkage disequilibrium with a recessive lethal mutation that affects embryonic or juvenile survival in sheep but is yet to be identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00634-1.
Collapse
|
14
|
Nosková A, Bhati M, Kadri NK, Crysnanto D, Neuenschwander S, Hofer A, Pausch H. Characterization of a haplotype-reference panel for genotyping by low-pass sequencing in Swiss Large White pigs. BMC Genomics 2021; 22:290. [PMID: 33882824 PMCID: PMC8061004 DOI: 10.1186/s12864-021-07610-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The key-ancestor approach has been frequently applied to prioritize individuals for whole-genome sequencing based on their marginal genetic contribution to current populations. Using this approach, we selected 70 key ancestors from two lines of the Swiss Large White breed that have been selected divergently for fertility and fattening traits and sequenced their genomes with short paired-end reads. RESULTS Using pedigree records, we estimated the effective population size of the dam and sire line to 72 and 44, respectively. In order to assess sequence variation in both lines, we sequenced the genomes of 70 boars at an average coverage of 16.69-fold. The boars explained 87.95 and 95.35% of the genetic diversity of the breeding populations of the dam and sire line, respectively. Reference-guided variant discovery using the GATK revealed 26,862,369 polymorphic sites. Principal component, admixture and fixation index (FST) analyses indicated considerable genetic differentiation between the lines. Genomic inbreeding quantified using runs of homozygosity was higher in the sire than dam line (0.28 vs 0.26). Using two complementary approaches, we detected 51 signatures of selection. However, only six signatures of selection overlapped between both lines. We used the sequenced haplotypes of the 70 key ancestors as a reference panel to call 22,618,811 genotypes in 175 pigs that had been sequenced at very low coverage (1.11-fold) using the GLIMPSE software. The genotype concordance, non-reference sensitivity and non-reference discrepancy between thus inferred and Illumina PorcineSNP60 BeadChip-called genotypes was 97.60, 98.73 and 3.24%, respectively. The low-pass sequencing-derived genomic relationship coefficients were highly correlated (r > 0.99) with those obtained from microarray genotyping. CONCLUSIONS We assessed genetic diversity within and between two lines of the Swiss Large White pig breed. Our analyses revealed considerable differentiation, even though the split into two populations occurred only few generations ago. The sequenced haplotypes of the key ancestor animals enabled us to implement genotyping by low-pass sequencing which offers an intriguing cost-effective approach to increase the variant density over current array-based genotyping by more than 350-fold.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland.
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | - Danang Crysnanto
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| | | | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
15
|
Harlizius B, Mathur P, Knol EF. Breeding for resilience: new opportunities in a modern pig breeding program. J Anim Sci 2020; 98:S150-S154. [PMID: 32810253 DOI: 10.1093/jas/skaa141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Pramod Mathur
- Topigs Norsvin Research Center, AA Beuningen, The Netherlands
| | - Egbert F Knol
- Topigs Norsvin Research Center, AA Beuningen, The Netherlands
| |
Collapse
|
16
|
A genome-wide scan for candidate lethal variants in Thoroughbred horses. Sci Rep 2020; 10:13153. [PMID: 32753654 PMCID: PMC7403398 DOI: 10.1038/s41598-020-68946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Abstract
Domestic animal populations are often characterised by high rates of inbreeding and low effective population sizes due to selective breeding practices. These practices can result in otherwise rare recessive deleterious alleles drifting to high frequencies, resulting in reduced fertility rates. This study aimed to identify potential recessive lethal haplotypes in the Thoroughbred horse breed, a closed population that has been selectively bred for racing performance. In this study, we identified a haplotype in the LY49B gene that shows strong evidence of being homozygous lethal, despite having high frequencies of heterozygotes in Thoroughbreds and other domestic horse breeds. Variant analysis of whole-genome sequence data identified two SNPs in the 3'UTR of the LY49B gene that may result in loss of function. Analysis of transcriptomic data from equine embryonic tissue revealed that LY49B is expressed in the trophoblast during placentation stage of development. These findings suggest that LY49B may have an essential, but as yet unknown function in the implantation stage of equine development. Further investigation of this region may allow for the development of a genetic test to improve fertility rates in horse populations. Identification of other lethal variants could assist in improving natural levels of fertility in horse populations.
Collapse
|
17
|
Mármol-Sánchez E, Luigi-Sierra MG, Quintanilla R, Amills M. Detection of homozygous genotypes for a putatively lethal recessive mutation in the porcine argininosuccinate synthase 1 (ASS1) gene. Anim Genet 2019; 51:106-110. [PMID: 31729055 DOI: 10.1111/age.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
The sequencing of the pig genome revealed the existence of homozygous individuals for a nonsense mutation in the argininosuccinate synthase 1 (ASS1) gene (rs81212146, c.944T>A, L315X). Paradoxically, an AA homozygous genotype for this polymorphism is expected to abolish the function of the ASS1 enzyme that participates in the urea cycle, leading to citrullinemia, hyperammonemia, coma and death. Sequencing of five Duroc boars that sired a population of 350 Duroc barrows revealed the segregation of the c.944T>A polymorphism, so we aimed to investigate its phenotypic consequences. Genotyping of this mutation in the 350 Duroc barrows revealed the existence of seven individuals homozygous (AA) for the nonsense mutation. These AA pigs had a normal weight despite the fact that mild citrullinemia often involves impaired growth. Sequencing of the region surrounding the mutation in TT, TA and AA individuals revealed that the A substitution in the second position of the codon (c.944T>A) is in complete linkage disequilibrium with a C replacement (c.943T>C) in the first position of the codon. This second mutation would compensate for the potentially damaging effect of the c.944T>A replacement. In fact, this is the most probable reason why pigs with homozygous AA genotypes at the 944 site of the ASS1 coding region are alive. Our results illustrate the complexities of predicting the consequences of nonsense mutations on gene function and phenotypes, not only because of annotation issues but also owing to the existence of genetic mechanisms that sometimes limit the penetrance of highly harmful mutations.
Collapse
Affiliation(s)
- E Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - M G Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - R Quintanilla
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Caldes de Montbui, 08140, Spain
| | - M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
18
|
Wu P, Wang K, Zhou J, Chen D, Yang Q, Yang X, Liu Y, Feng B, Jiang A, Shen L, Xiao W, Jiang Y, Zhu L, Zeng Y, Xu X, Li X, Tang G. GWAS on Imputed Whole-Genome Resequencing From Genotyping-by-Sequencing Data for Farrowing Interval of Different Parities in Pigs. Front Genet 2019; 10:1012. [PMID: 31681435 PMCID: PMC6813215 DOI: 10.3389/fgene.2019.01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022] Open
Abstract
The whole-genome sequencing (WGS) data can potentially discover all genetic variants. Studies have shown the power of WGS for genome-wide association study (GWAS) lies in the ability to identify quantitative trait loci and nucleotides (QTNs). However, the resequencing of thousands of target individuals is expensive. Genotype imputation is a powerful approach for WGS and to identify causal mutations. This study aimed to evaluate the imputation accuracy from genotyping-by-sequencing (GBS) to WGS in two pig breeds using a resequencing reference population and to detect single-nucleotide polymorphisms (SNPs) and candidate genes for farrowing interval (FI) of different parities using the data before and after imputation for GWAS. Six hundred target pigs, 300 Landrace and 300 Large White pigs, were genotyped by GBS, and 60 reference pigs, 20 Landrace and 40 Large White pigs, were sequenced by whole-genome resequencing. Imputation for pigs was conducted using Beagle software. The average imputation accuracy (allelic R 2) from GBS to WGS was 0.42 for Landrace pigs and 0.45 for Large White pigs. For Landrace pigs (Large White pigs), 4,514,934 (5,533,290) SNPs had an accuracy >0.3, resulting an average accuracy of 0.73 (0.72), and 2,093,778 (2,468,645) SNPs had an accuracy >0.8, resulting an average accuracy of 0.94 (0.93). Association studies with data before and after imputation were performed for FI of different parities in two populations. Before imputation, 18 and 128 significant SNPs were detected for FI in Landrace and Large White pigs, respectively. After imputation, 125 and 27 significant SNPs were identified for dataset with an accuracy >0.3 and 0.8 in Large White pigs, and 113 and 18 SNPs were found among imputed sequence variants. Among these significant SNPs, six top SNPs were detected in both GBS data and imputed WGS data, namely, SSC2: 136127645, SSC5: 103426443, SSC6: 27811226, SSC10: 3609429, SSC14: 15199253, and SSC15: 150297519. Overall, many candidate genes could be involved in FI of different parities in pigs. Although imputation from GBS to WGS data resulted in a low imputation accuracy, association analyses with imputed WGS data were optimized to detect QTNs for complex trait. The obtained results provide new insight into genotype imputation, genetic architecture, and candidate genes for FI of different parities in Landrace and Large White pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiang Yang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yihui Liu
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Bo Feng
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangshuang Zeng
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Xu Xu
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Mulder HA, Lee SH, Clark S, Hayes BJ, van der Werf JHJ. The Impact of Genomic and Traditional Selection on the Contribution of Mutational Variance to Long-Term Selection Response and Genetic Variance. Genetics 2019; 213:361-378. [PMID: 31431471 PMCID: PMC6781905 DOI: 10.1534/genetics.119.302336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
De novo mutations (DNM) create new genetic variance and are an important driver for long-term selection response. We hypothesized that genomic selection exploits mutational variance less than traditional selection methods such as mass selection or selection on pedigree-based breeding values, because DNM in selection candidates are not captured when the selection candidates' own phenotype is not used in genomic selection, DNM are not on SNP chips and DNM are not in linkage disequilibrium with the SNP on the chip. We tested this hypothesis with Monte Carlo simulation. From whole-genome sequence data, a subset of ∼300,000 variants was used that served as putative markers, quantitative trait loci or DNM. We simulated 20 generations with truncation selection based on breeding values from genomic best linear unbiased prediction without (GBLUP_no_OP) or with own phenotype (GBLUP_OP), pedigree-based BLUP without (BLUP_no_OP) or with own phenotype (BLUP_OP), or directly on phenotype. GBLUP_OP was the best strategy in exploiting mutational variance, while GBLUP_no_OP and BLUP_no_OP were the worst in exploiting mutational variance. The crucial element is that GBLUP_no_OP and BLUP_no_OP puts no selection pressure on DNM in selection candidates. Genetic variance decreased faster with GBLUP_no_OP and GBLUP_OP than with BLUP_no_OP, BLUP_OP or mass selection. The distribution of mutational effects, mutational variance, number of DNM per individual and nonadditivity had a large impact on mutational selection response and mutational genetic variance, but not on ranking of selection strategies. We advocate that more sustainable genomic selection strategies are required to optimize long-term selection response and to maintain genetic diversity.
Collapse
Affiliation(s)
- Herman A Mulder
- Wageningen University & Research Animal Breeding and Genomics, 6700 AH Wageningen, The Netherlands
| | - Sang Hong Lee
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sam Clark
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4067, Queensland, Australia
| | - Julius H J van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
20
|
Wellmann R, Bennewitz J. Key Genetic Parameters for Population Management. Front Genet 2019; 10:667. [PMID: 31475027 PMCID: PMC6707806 DOI: 10.3389/fgene.2019.00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Population management has the primary task of maximizing the long-term competitiveness of a breed. Breeds compete with each other for being able to supply consumer demands at low costs and also for funds from conservation programs. The competition for consumer preference is won by breeds with high genetic gain for total merit who maintained a sufficiently high genetic diversity, whereas the competition for funds is won by breeds with high conservation value. The conservation value of a breed could be improved by increasing its contribution to the gene pool of the species. This may include the recovery of its original genetic background and the maintenance of a high genetic diversity at native haplotype segments. The primary objective of a breeding program depends on the genetic state of the population and its intended usage. In this paper, we review the key genetic parameters that are relevant for population management, compare the methods for estimating them, derive the formulas for predicting their value at a future time, and clarify their usage in various types of breeding programs that differ in their main objectives. These key parameters are kinships, native kinships, breeding values, Mendelian sampling variances, native contributions, and mutational effects. Population management currently experiences a transition from using pedigree-based estimates to marker-based estimates, which improves the accuracies of these estimates and thereby increases response to selection. In addition, improved measures of the factors that determine the competitiveness of a breed and utilize auxiliary parameters, such as Mendelian sampling variances, mutational effects, and native kinships, enable to improve further upon historic recommendations for genetic population management.
Collapse
Affiliation(s)
- Robin Wellmann
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
21
|
Chen Z, Ye S, Teng J, Diao S, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-wide association studies for the number of animals born alive and dead in duroc pigs. Theriogenology 2019; 139:36-42. [PMID: 31362194 DOI: 10.1016/j.theriogenology.2019.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/15/2022]
Abstract
Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. As an important litter size trait in pigs, the number of piglets born alive at birth (NBA) receives widespread interests in the pig industry. However, traits of piglets born dead, including the number of stillborn piglets (NS) and the piglets mummified at birth (NM) should be noted to explain the loss of reproduction. Herein, in the present study, a total of 803 producing sows were sampled and 2807 farrowing records for NBA, NM, and NS traits were collected in a Duroc swine population. Subsequently, a genome-wide association study (GWAS) was performed for NBA, NS and NM in parity groups 1 to 5. In total, 10 putative regions were found associated with these traits. After stepwise conditional analyses around the putative regions, eight independent signals were ultimately identified for NBA, NS, and NM, and there were seven promising candidate genes related to these traits, including ARID1A, RXRG, NFATC4, ABTB2, GRAMD1B, NDRG1, and APC. Our findings contribute to the understanding of the significant genetic causes of piglets born alive and dead, and could have a positive effect on pig production efficiency and economic profits.
Collapse
Affiliation(s)
- Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Johnsson M, Gaynor RC, Jenko J, Gorjanc G, de Koning DJ, Hickey JM. Removal of alleles by genome editing (RAGE) against deleterious load. Genet Sel Evol 2019; 51:14. [PMID: 30995904 PMCID: PMC6472060 DOI: 10.1186/s12711-019-0456-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding? RESULTS We simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal. Deleterious load was polygenic and was due to either codominant or recessive variants. We compared strategies for removal of deleterious alleles by genome editing (RAGE) to selection against carriers. When deleterious variants were codominant, the best strategy for prioritizing variants was to prioritize low-frequency variants. When deleterious variants were recessive, the best strategy was to prioritize variants with an intermediate frequency. Selection against carriers was inefficient when variants were codominant, but comparable to editing one variant per sire when variants were recessive. CONCLUSIONS Genome editing of deleterious alleles reduces deleterious load, but requires the simultaneous editing of multiple deleterious variants in the same sire to be effective when deleterious variants are recessive. In the short term, selection against carriers is a possible alternative to genome editing when variants are recessive. Our results suggest that, in the future, there is the potential to use RAGE against deleterious load in animal breeding.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - R. Chris Gaynor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland UK
| | - Janez Jenko
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland UK
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland UK
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - John M. Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland UK
| |
Collapse
|
23
|
Derks MFL, Gjuvsland AB, Bosse M, Lopes MS, van Son M, Harlizius B, Tan BF, Hamland H, Grindflek E, Groenen MAM, Megens HJ. Loss of function mutations in essential genes cause embryonic lethality in pigs. PLoS Genet 2019; 15:e1008055. [PMID: 30875370 PMCID: PMC6436757 DOI: 10.1371/journal.pgen.1008055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/27/2019] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Lethal recessive alleles cause pre- or postnatal death in homozygous affected individuals, reducing fertility. Especially in small size domestic and wild populations, those alleles might be exposed by inbreeding, caused by matings between related parents that inherited the same recessive lethal allele from a common ancestor. In this study we report five relatively common (up to 13.4% carrier frequency) recessive lethal haplotypes in two commercial pig populations. The lethal haplotypes have a large effect on carrier-by-carrier matings, decreasing litter sizes by 15.1 to 21.6%. The causal mutations are of different type including two splice-site variants (affecting POLR1B and TADA2A genes), one frameshift (URB1), and one missense (PNKP) variant, resulting in a complete loss-of-function of these essential genes. The recessive lethal alleles affect up to 2.9% of the litters within a single population and are responsible for the death of 0.52% of the total population of embryos. Moreover, we provide compelling evidence that the identified embryonic lethal alleles contribute to the observed heterosis effect for fertility (i.e. larger litters in crossbred offspring). Together, this work marks specific recessive lethal variation describing its functional consequences at the molecular, phenotypic, and population level, providing a unique model to better understand fertility and heterosis in livestock. Lethal recessives are mutations that cause early lethality in homozygous state that usually occur at very low frequency in wild and domestic populations. In livestock, however, those mutations might become more prevalent as a result of inbreeding. In this study, we report five such recessive lethal haplotypes that cause embryonic lethality in homozygous state in pigs. The causal mutations are of different type but all destroy the structure of essential genes involved in cellular housekeeping processes, essential for embryonic development. The lethal recessives have substantial impact on the population fitness affecting up to 3% of the population litters, causing the death of 0.52% of the total population of embryos. Moreover, these 'natural knockouts' can increase understanding of gene function within the mammalian clade. Together, our study will allow monitoring, and facilitate the purging and partial elimination of recessive lethal mutations in frequently used pig breeds.
Collapse
Affiliation(s)
- Martijn F. L. Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail:
| | | | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Marcos S. Lopes
- Topigs Norsvin Research Center, Beuningen, the Netherlands
- Topigs Norsvin, Curitiba, Brazil
| | | | | | - Beatrice F. Tan
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Martien A. M. Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
24
|
Jenko J, McClure MC, Matthews D, McClure J, Johnsson M, Gorjanc G, Hickey JM. Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle. Genet Sel Evol 2019; 51:9. [PMID: 30836944 PMCID: PMC6402105 DOI: 10.1186/s12711-019-0452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In livestock, deleterious recessive alleles can result in reduced economic performance of homozygous individuals in multiple ways, e.g. early embryonic death, death soon after birth, or semi-lethality with incomplete penetrance causing reduced viability. While death is an easy phenotype to score, reduced viability is not as easy to identify. However, it can sometimes be observed as reduced conception rates, longer calving intervals, or lower survival for live born animals. METHODS In this paper, we searched for haplotypes that carry putatively recessive lethal or semi-lethal alleles in 132,725 genotyped Irish beef cattle from five breeds: Aberdeen Angus, Charolais, Hereford, Limousin, and Simmental. We phased the genotypes in sliding windows along the genome and used five tests to identify haplotypes with absence of or reduced homozygosity. Then, we associated the identified haplotypes with 44,351 insemination records that indicated early embryonic death, and postnatal survival records. Finally, we assessed haplotype pleiotropy by estimating substitution effects on estimates of breeding value for 15 economically important traits in beef production. RESULTS We found support for one haplotype that carries a putatively recessive lethal (chromosome 16 in Simmental) and two haplotypes that carry semi-lethal alleles (chromosome 14 in Aberdeen Angus and chromosome 19 in Charolais), with population frequencies of 8.8, 15.2, and 14.4%, respectively. These three haplotypes showed pleiotropic effects on economically important traits for beef production. Their allele substitution effects are €2.30, €3.42, and €1.47 for the terminal index and €1.03, - €3.11, and - €0.88 for the replacement index, where the standard deviations for the terminal index are €22.52, €18.65, and €22.70 and for the replacement index they are €31.35, €29.82, and €35.79. We identified ZFAT as the candidate gene for semi-lethality in Aberdeen Angus, several candidate genes for the lethal Simmental haplotype, and no candidate genes for the semi-lethal Charolais haplotype. CONCLUSIONS We analysed genotype, reproduction, survival, and production data to detect haplotypes that carry putatively recessive lethal or semi-lethal alleles in Irish beef cattle and identified one lethal and two semi-lethal haplotypes, which have pleiotropic effects on economically important traits in beef production.
Collapse
Affiliation(s)
- Janez Jenko
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | | | | | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - John M Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.
| |
Collapse
|
25
|
Wu P, Wang K, Zhou J, Yang Q, Yang X, Jiang A, Jiang Y, Li M, Zhu L, Bai L, Li X, Tang G. A genome wide association study for the number of animals born dead in domestic pigs. BMC Genet 2019; 20:4. [PMID: 30616509 PMCID: PMC6324166 DOI: 10.1186/s12863-018-0692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The number of animals born dead, which includes the number of mummified (NM) and stillborn (NS) animals, is the most important trait to directly quantify the reproductive loss in domestic pigs. In this study, 282 Landrace sows and 250 Large White sows were genotyped by sequencing (GBS). A total of 816 and 1068 litter records for NM and NS were collected from them. A genome-wide association study (GWAS) was conducted to reveal the genetic difference between NM and NS. RESULTS A total of 248 and 10 genome-wide significant SNPs were detected for NM and NS across numerous parities in Landrace pigs. The corresponding numbers for Large White pigs were 175 and 6, respectively. All of the detected SNPs were parity specific for both NM and NS in two breeds. Based on significant SNPs, in total 242 (146 for Landrace pig, 96 for Large White pig) and 10 significant chromosome regions (8 for Landrace pigs, 2 for Large White pigs) were found for NM and NS, respectively. Among them, 237 (142 for Landrace pig, 95 for Large White pig) and 8 significant chromosome regions (6 for Landrace pigs, 2 for Large White pigs) for NM and NS were not reported in previous studies. A list of candidate genes at the identified loci was proposed, including HMGB1, SOX5, KCNJ8, ABCC9 and YY1 for NM, ASTN1 for NS. CONCLUSION This is the first time when GBS data was used to identify genetic regions affecting NM and NS in Landrace and Large White pigs. Many identified informative SNPs and candidate genes advance our understanding of the genetic architecture of NM and NS in pigs. However, further studies are needed to validate using larger populations with more breeds.
Collapse
Affiliation(s)
- Pingxian Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Kai Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jie Zhou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Qiang Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xidi Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Anan Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
26
|
Bosse M, Megens H, Derks MFL, de Cara ÁMR, Groenen MAM. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol Appl 2019; 12:6-17. [PMID: 30622631 PMCID: PMC6304688 DOI: 10.1111/eva.12691] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Each individual has a certain number of harmful mutations in its genome. These mutations can lower the fitness of the individual carrying them, dependent on their dominance and selection coefficient. Effective population size, selection, and admixture are known to affect the occurrence of such mutations in a population. The relative roles of demography and selection are a key in understanding the process of adaptation. These are factors that are potentially influenced and confounded in domestic animals. Here, we hypothesize that the series of events of bottlenecks, introgression, and strong artificial selection associated with domestication increased mutational load in domestic species. Yet, mutational load is hard to quantify, so there are very few studies available revealing the relevance of evolutionary processes. The precise role of artificial selection, bottlenecks, and introgression in further increasing the load of deleterious variants in animals in breeding and conservation programmes remains unclear. In this paper, we review the effects of domestication and selection on mutational load in domestic species. Moreover, we test some hypotheses on higher mutational load due to domestication and selective sweeps using sequence data from commercial pig and chicken lines. Overall, we argue that domestication by itself is not a prerequisite for genetic erosion, indicating that fitness potential does not need to decline. Rather, mutational load in domestic species can be influenced by many factors, but consistent or strong trends are not yet clear. However, methods emerging from molecular genetics allow discrimination of hypotheses about the determinants of mutational load, such as effective population size, inbreeding, and selection, in domestic systems. These findings make us rethink the effect of our current breeding schemes on fitness of populations.
Collapse
Affiliation(s)
- Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Martijn F. L. Derks
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Ángeles M. R. de Cara
- Centre d’Ecologie Fonctionnelle et EvolutiveCNRSUniversité de MontpellierUniversité Paul Valéry Montpellier 3EPHE, IRDMontpellierFrance
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
27
|
Zhang C, MacNeil MD, Kemp RA, Dyck MK, Plastow GS. Putative Loci Causing Early Embryonic Mortality in Duroc Swine. Front Genet 2018; 9:655. [PMID: 30619476 PMCID: PMC6304751 DOI: 10.3389/fgene.2018.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Lethal recessive alleles that act prenatally may be detected from the absence of homozygous individuals in a population. However, these alleles may be maintained at relatively low frequencies in populations as heterozygotes. In pigs, they may reduce litter size. This study aimed to detect putative lethal variants in the Duroc breed. Phenotypes for the numbers of piglets born (TNB), born live (BA), alive at 24 h (L24), stillborn (SB), and born as mummified fetuses (MM) were available from 5340 recorded litters which resulted from mating of 192 genotyped boars with sows of unknown genotype (dataset 1). An additional 50 litters were produced from parents that were both genotyped (dataset 2). Imputed genotypes of 650K SNPs for 1359 Duroc boars were used in this study. One significant SNP (Bonferroni corrected P = 5.5E-06) was located on SSC14 with 45.3 homozygous individuals expected but none observed. This SNP was significant for mummified fetuses. One hundred fifty two haplotypes were also found to potentially harbor recessive lethal mutations. Twenty-one haplotypes had a significant harmful effect on at least one trait. Two regions, located on SSC8 (144.9–145.5 Mb) and SSC9 (19–19.4 Mb) had significant effects on fertility traits in both datasets. Additionally, regions on SSC1 (82.0–82.8 Mb), SSC3 (73.3–73.7 and 87.1–87.5 Mb) and SSC12 (35.8–36.2 and 50.0–50.5 Mb) had significant deleterious effects on TNB or BA or L24 in dataset 1. Finally, a region on SSC17 (28.7–29.3 Mb) had significant effects on TNB, BA and L24 in dataset 2. A few candidate genes identified within these regions were described as being involved in spermatogenesis and male fertility (TEX14, SEP4, and HSF5), or displayed recessive lethality (CYP26B1, SCD5, and PCF11) in other species. The putative loci detected in this study provide valuable information to potentially increase Duroc litter size by avoiding carrier-by-carrier matings in breeding programs. Further study of the identified candidate genes responsible for such lethal effects may lead to new insights into functions regulating pig fertility.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael D MacNeil
- Delta G, Miles City, MT, United States.,Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Michael K Dyck
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
|
29
|
Derks MFL, Lopes MS, Bosse M, Madsen O, Dibbits B, Harlizius B, Groenen MAM, Megens HJ. Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome. PLoS Genet 2018; 14:e1007661. [PMID: 30231021 PMCID: PMC6166978 DOI: 10.1371/journal.pgen.1007661] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/01/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Livestock populations can be used to study recessive defects caused by deleterious alleles. The frequency of deleterious alleles including recessive lethal alleles can stay at high or moderate frequency within a population, especially if recessive lethal alleles exhibit an advantage for favourable traits in heterozygotes. In this study, we report such a recessive lethal deletion of 212kb (del) within the BBS9 gene in a breeding population of pigs. The deletion produces a truncated BBS9 protein expected to cause a complete loss-of-function, and we find a reduction of approximately 20% on the total number of piglets born from carrier by carrier matings. Homozygous del/del animals die mid- to late-gestation, as observed from high increase in numbers of mummified piglets resulting from carrier-by-carrier crosses. The moderate 10.8% carrier frequency (5.4% allele frequency) in this pig population suggests an advantage on a favourable trait in heterozygotes. Indeed, heterozygous carriers exhibit increased growth rate, an important selection trait in pig breeding. Increased growth and appetite together with a lower birth weight for carriers of the BBS9 null allele in pigs is analogous to the phenotype described in human and mouse for (naturally occurring) BBS9 null-mutants. We show that fetal death, however, is induced by reduced expression of the downstream BMPER gene, an essential gene for normal foetal development. In conclusion, this study describes a lethal 212kb deletion with pleiotropic effects on two different genes, one resulting in fetal death in homozygous state (BMPER), and the other increasing growth (BBS9) in heterozygous state. We provide strong evidence for balancing selection resulting in an unexpected high frequency of a lethal allele in the population. This study shows that the large amounts of genomic and phenotypic data routinely generated in modern commercial breeding programs deliver a powerful tool to monitor and control lethal alleles much more efficiently. We report a large deletion within the BBS9 gene that induces late fetal mortality in homozygous affected animals in a commercial pig population. This late fetal mortality causes the fetus to become encapsulated and desiccated during the remaining time of the pregnancy, a process called mummification. The unusually high carrier frequency for this lethal deletion (10.8%) likely results from its strong positive association with growth rate in heterozygous individuals, an important selection trait in the pig breeding industry. Interestingly, we show that the positive effect on growth is induced by a heterozygous loss-of-function of the BBS9 gene, associated with obesity in human and mouse. However, late fetal mortality is induced by insufficient expression of the BMPER gene located directly downstream of the deletion which affects its regulatory elements required for gene expression. Together, our study shows an unique example of allelic pleiotropy in which one allele (deletion) is responsible for both increased growth and late fetal mortality by affecting two different genes.
Collapse
Affiliation(s)
- Martijn F. L. Derks
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
- * E-mail:
| | - Marcos S. Lopes
- Topigs Norsvin Research Center, Beuningen, the Netherlands
- Topigs Norsvin, Curitiba, Brazil
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Ole Madsen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Bert Dibbits
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | | | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
30
|
A survey of functional genomic variation in domesticated chickens. Genet Sel Evol 2018; 50:17. [PMID: 29661130 PMCID: PMC5902831 DOI: 10.1186/s12711-018-0390-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.
Collapse
|