1
|
Liang Y, Gao Q, Li F, Du Y, Wu J, Pan W, Wang S, Zhang X, Zhang M, Song X, Zhong L, Zhang F, Li Y, Wang Z, Li D, Duan Q, Li S, Jin C, Zhang P, Gu Y, Chen ZH, Mayer KFX, Zhou X, Wang J, Zhang L. The giant genome of lily provides insights into the hybridization of cultivated lilies. Nat Commun 2025; 16:45. [PMID: 39747119 PMCID: PMC11696169 DOI: 10.1038/s41467-024-55545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.66 Gb) and Gloriosa superba (flame lily, 5.09 Gb). The giant lily genome is shaped by recent long terminal repeat retroelements. Phylogenetic analysis reveals diverse, independent origins of lily cultivars. Gene families involved in sucrose and starch metabolism are significantly expanded in the lily genome. Key homologs of XTH22, SOC1, and AP1/FUL-like genes regulate the development, bud growth transition, and floral bud growth transition of lily bulbs. Colchicine biosynthetic gene clusters are identified in G. superba but are absent in L. sargentiae, highlighting independent colchicine evolution in Colchicaceae. These genomic insights enhance understanding of Liliales evolution, providing a foundation for future breeding and molecular research.
Collapse
Affiliation(s)
- Yuwei Liang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Qiang Gao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Fan Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yunpeng Du
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoming Song
- Center for Genomics and Bio-computing, College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yan Li
- Qi Biodesign, Beijing, China
| | | | - Danqing Li
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Duan
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Chunlian Jin
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Peihua Zhang
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yang Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences, Technical University Munich, Munich, Germany.
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China.
| | - Jihua Wang
- Yunnan Seed Laboratory, Kunming, China.
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China.
| | - Liangsheng Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
- Yazhouwan National Laboratory, Sanya, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
2
|
Kiani HS, Noudehi MS, Shokrpour M, Zargar M, Naghavi MR. Investigation of genes involved in scent and color production in Rosa damascena Mill. Sci Rep 2024; 14:20576. [PMID: 39242697 PMCID: PMC11379714 DOI: 10.1038/s41598-024-71518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.
Collapse
Affiliation(s)
- Hoda Sadat Kiani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Manijeh Sabokdast Noudehi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198.
| |
Collapse
|
3
|
Cao L, Jiang F, Liu D, Zhang J, Yang T, Zhang J, Che D, Fan J. Genome-Wide Characterization of Differentially Expressed Scent Genes in the MEP Control Network of the Flower of Lilium 'Sorbonne'. Mol Biotechnol 2024:10.1007/s12033-024-01063-3. [PMID: 38379074 DOI: 10.1007/s12033-024-01063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Fragrance is an important feature of ornamental lilies. Components of volatile substances and important genes for monoterpene synthesis in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway were examined in this study. Twenty volatile compounds (2 in the budding stage, 3 in the initial flowering stage, 7 in the semi-flowering stage, 17 in the full-flowering stage, and 5 in withering stage) were detected in the Oriental lily 'Sorbonne' using gas chromatography-mass spectrometry. The semi- and full-flowering stages were key periods for volatile substance production and enzyme function. Sequence assembly from samples collected during all flowering stages resulted in the detection of 274,849 genes and 129,017 transcripts. RNA sequencing and heatmapping led to the detection of genes in the MEP monoterpene metabolism pathway. Through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we extracted key genes (LiDXS2, LiLIS, and LiMYS) and transcription factors (in the bHLH, MYB, HD-ZIP, and NAC families) associated with the MEP pathway. Tissue localization revealed that LiDXS2, LiLIS, and LiMYS were expressed in Lilium 'Sorbonne' petals in the full-flowering stage. Genes regulating the 1-deoxy-D-X-lignone-5-phosphate synthase family of rate-limiting enzymes, involved in the first step of monoterpene synthesis, showed high expression in the semi- and full-flowering stages. LiDXS2 was cloned and localized in chloroplast subcells. The relative expression of terpene-related genes in the MEP and mevalonic acid pathways of wild-type and LiLIS/LiMYS transgenic Arabidopsis thaliana, and changes in chemical composition, confirmed that LiLIS/LiMYS regulates the monoterpene synthesis pathway. The results of this study provide a theoretical basis for the synthesis of lily aromatic substances and the cultivation of new garden flower varieties.
Collapse
Affiliation(s)
- Lei Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaohua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Yue Y, Wang L, Li M, Liu F, Yin J, Huang L, Zhou B, Li X, Yu Y, Chen F, Yu R, Fan Y. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1275960. [PMID: 37841617 PMCID: PMC10570747 DOI: 10.3389/fpls.2023.1275960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Lily is a popular flower worldwide due to its elegant appearance and pleasant fragrance. Floral volatiles of lily are predominated by monoterpenes and benzenoids. While a number of genes for monoterpene biosynthesis have been characterized, the molecular mechanism underlying floral benzenoid formation in lily remains unclear. Here, we report on the identification and characterization of a novel BAHD acyltransferase gene that contributes to the biosynthesis of two related floral scent benzoate esters, ethyl benzoate and methyl benzoate, in the scented Lilium oriental hybrid 'Siberia'. The emission of both methyl benzoate and ethyl benzoate in L. 'Siberia' was found to be tepal-specific, floral development-regulated and rhythmic. Through transcriptome profiling and bioinformatic analysis, a BAHD acyltransferase gene designated LoAAT1 was identified as the top candidate gene for the production of ethyl benzoate. In vitro enzyme assays and substrate feeding assays provide substantial evidence that LoAAT1 is responsible for the biosynthesis of ethyl benzoate. It was interesting to note that in in vitro enzyme assay, LoAAT1 can also catalyze the formation of methyl benzoate, which is typically formed by the action of benzoic acid methyltransferase (BAMT). The lack of an expressed putative BAMT gene in the flower transcriptome of L. 'Siberia', together with biochemical and expression evidence, led us to conclude that LoAAT1 is also responsible for, or at least contributes to, the biosynthesis of the floral scent compound methyl benzoate. This is the first report that a member of the plant BAHD acyltransferase family contributes to the production of both ethyl benzoate and methyl benzoate, presenting a new mechanism for the biosynthesis of benzoate esters.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyi Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junle Yin
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lijun Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Bin Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Gao C, Zhang L, Xu Y, Liu Y, Xiao X, Cui L, Xia Y, Wu Y, Ren Z. Full-length transcriptome analysis revealed that 2,4-dichlorophenoxyacetic acid promoted in vitro bulblet initiation in lily by affecting carbohydrate metabolism and auxin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1236315. [PMID: 37799550 PMCID: PMC10548195 DOI: 10.3389/fpls.2023.1236315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
Bulblet initiation, including adventitious bud initiation and bulblet formation, is a crucial process for lily and other bulbous flowers that are commercially propagated by vegetative means. Here, by a hybrid strategy combining Pacific Biosciences (PacBio) full-length sequencing and Illumina RNA sequencing (RNA-seq), high-quality transcripts of L. brownii (Lb) and its variety, L. brownii var. giganteum (Lbg), during in vitro bulblet initiation were obtained. A total of 53,576 and 65,050 high-quality non-redundant full-length transcripts of Lbg and Lb were generated, respectively. Morphological observation showed that Lbg possessed a stronger capacity to generate bulblets in vitro than Lb, and 1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) significantly increased bulblet regeneration rate in two lilies. Screening of differentially expressed transcripts (DETs) between different stages and Mfuzz analysis showed 0 DAT to 1 DAT was the crucial stage with the most complex transcriptional change, with carbohydrate metabolism pathway was significantly enriched. In addition, 6,218 and 8,965 DETs were screened between the 2,4-D-treated group and the control group in Lbg and Lb, respectively. 2,4-D application had evident effects on the expression of genes involved in auxin signaling pathway, such as TIRs, ARFs, Aux/IAAs, GH3s and SAURs. Then, we compared the expression profiles of crucial genes of carbohydrate metabolism between different stages and different treatments. SUSs, SUTs, TPSs, AGPLs, GBSSs and SSs showed significant responses during bulblet initiation. The expression of CWINs, SUTs and SWEETs were significantly upregulated by 2,4-D in two lilies. In addition, 2,4-D increased the expression of starch degradation genes (AMYs and BAMs) and inhibited starch synthesis genes (AGPLs, GBSSs and SSs). SBEs were significantly upregulated in Lbg but not in Lb. Significant co-expression was showed between genes involved in carbohydrate metabolism and auxin signaling, together with transcription factors such as bHLHs, MYBs, ERFs and C3Hs. This study indicates the coordinate regulation of bulblet initiation by carbohydrate metabolism and auxin signaling, serving as a basis for further studies on the molecular mechanism of bulblet initiation in lily and other bulbous flowers.
Collapse
Affiliation(s)
- Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchen Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xiao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liu Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Wu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb. PLoS One 2022; 17:e0262506. [PMID: 35015792 PMCID: PMC8752016 DOI: 10.1371/journal.pone.0262506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
As the main forms of carbohydrates, starch and sucrose play a vital role in the balance and coordination of various carbohydrates. Lanzhou lily is the most popular edible lily in China, mainly distributed in the central region of Gansu. To clarify the relationship between carbohydrate metabolism and bulb development of Lanzhou lily, so as to provide a basis for the promotion of the growth and development in Lanzhou lily and its important economic value, we studied lily bulbs in the squaring stage, flowering stage, half withering stage and withering stage. The plant height, fresh weight of mother and daughter bulbs continued to increase during the whole growth period and fresh weight of stem and leaf began to decrease in the half withering stage. The content of starch, sucrose and total soluble sugar in the lily mother bulb accumulated mostly in the flowering, withering and half withering stages, respectively. Starch, sucrose and total soluble sugar accumulated in the daughter bulb with the highest concentration during the withering stage. In the transcription level, sucrose synthase (SuSy1) and sucrose invertase (INV2) expressed the highest in squaring stage, and the expression was significantly higher in the mother bulb than in the daughter bulb. In flowering stage, the expression levels of soluble starch synthase (SSS1), starch-branching enzyme (SBE) and adenosine diphosphate-glucose pyrophosphorylase (AGP1) genes were higher in the mother bulb than in the daughter bulb. Altogether, our results indicate that starch and sucrose are important for the bulb growth and development of Lanzhou lily.
Collapse
|
7
|
Luo J, Li R, Xu X, Niu H, Zhang Y, Wang C. SMRT and Illumina RNA Sequencing and Characterization of a Key NAC Gene LoNAC29 during the Flower Senescence in Lilium oriental 'Siberia'. Genes (Basel) 2021; 12:genes12060869. [PMID: 34204040 PMCID: PMC8227295 DOI: 10.3390/genes12060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Lily (Lilium spp.) is an important cut flower around the world. Flower senescence in lilies is characterized by the wilting and abscission of tepals, which results in a decrease in flower quality and huge economic loss. However, the mechanism underlying flower senescence in lilies is largely unknown. In this study, single-molecule, real-time (SMRT) and Illumina sequencing were carried out in L. oriental ‘Siberia’. Sequencing yielded 73,218 non-redundant transcripts, with an N50 of 3792 bp. These data were further integrated with three published transcriptomes through cogent analysis, which yielded 62,960 transcripts, with an increase in N50 of 3935 bp. Analysis of differentially expressed genes showed that 319 transcription factors were highly upregulated during flower senescence. The expression of twelve NAC genes and eleven senescence-associated genes (SAGs) showed that LoNAC29 and LoSAG39 were highly expressed in senescent flowers. Transient overexpression of LoNAC29 and LoSAG39 in tepals of lily notably accelerated flower senescence, and the promoter activity of LoSAG39 was strongly induced by LoNAC29. This work supported new evidence for the molecular mechanism of flower senescence and provided better sequence data for further study in lilies.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Xintong Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Hairui Niu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Yujie Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87282010
| |
Collapse
|
8
|
Kumari S, Kanth BK, Ahn JY, Kim JH, Lee GJ. Genome-Wide Transcriptomic Identification and Functional Insight of Lily WRKY Genes Responding to Botrytis Fungal Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:776. [PMID: 33920859 PMCID: PMC8071302 DOI: 10.3390/plants10040776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes-LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12-were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.
Collapse
Affiliation(s)
- Shipra Kumari
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Bashistha Kumar Kanth
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Ju young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Jong Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
9
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Yin X, Wang T, Zhang M, Zhang Y, Irfan M, Chen L, Zhang L. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1960605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiaojuan Yin
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Liaoning, PR China
| | - Tiantian Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Min Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Liaoning, PR China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning, PR China
| |
Collapse
|
11
|
Puglia GD, Prjibelski AD, Vitale D, Bushmanova E, Schmid KJ, Raccuia SA. Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genomics 2020; 21:317. [PMID: 32819282 PMCID: PMC7441626 DOI: 10.1186/s12864-020-6670-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.
Collapse
Affiliation(s)
- Giuseppe D Puglia
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany. .,Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy.
| | - Andrey D Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Domenico Vitale
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Elena Bushmanova
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Karl J Schmid
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany.
| | - Salvatore A Raccuia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
12
|
Yang L, Liao X, Cheng P, Zhang ZG, Li H. Composition and diurnal variation of floral scent emission in Rosa rugosa Thunb. and Tulipa gesneriana L. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis study was aimed to explore the composition and diurnal variation analyses of floral scent emission from Rosa rugosa Thunb. and Tulipa gesneriana L. The floral scent from the fresh flower were collected at different time points (9:00, 12:00, 15:00, 18:00, and 21:00) using dynamic headspace collection and were analyzed using autothermal desorber-gas chromatography/mass spectrometry (ATD-GC/MS). The results showed that a total of 62 volatile flavor compounds were detected from Rosa rugosa Thunb and a total of 70 volatile flavor compounds were detected from Tulipa gesneriana L. They were identified with eight functional categories: alcohols, fatty hydrocarbons, terpenes, aldehydes, ketones, esters, and other substances. The total release amount first decreased, and then increased with time, and arrived at the lowest at 15:00. The release amounts of different categories present distinct change patterns. Among the components, phenylethyl alcohol, citronellol, methylene chloride, hexane, and acetone showed relatively higher release amounts and were thought as the main components in floral scent of Rosa rugosa Thunb. Alpha-Farnesene, ethanol, pentadecane, beta-ocimene, longifolene, caryophyllene, and acetone showed relatively higher release amounts and were thought as the main components in floral scent of Tulipa gesneriana L. Research of roses and tulips in aromatic in the garden provides a theoretical basis and research and improvement of the aroma components of aroma.
Collapse
Affiliation(s)
- Lu Yang
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Xiang Liao
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Ping Cheng
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Zhi-Gang Zhang
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| | - Hong Li
- Xinjiang Academy of Forestry, Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
| |
Collapse
|
13
|
Park D, Kim JH, Kim NS. De novo transcriptome sequencing and gene expression profiling with/without B-chromosome plants of Lilium amabile. Genomics Inform 2019; 17:e27. [PMID: 31610623 PMCID: PMC6808634 DOI: 10.5808/gi.2019.17.3.e27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
Supernumerary B chromosomes were found in Lilium amabile (2n = 2x = 24), an endemic Korean lily that grows in the wild throughout the Korean Peninsula. The extra B chromosomes do not affect the host-plant morphology; therefore, whole transcriptome analysis was performed in 0B and 1B plants to identify differentially expressed genes. A total of 154,810 transcripts were obtained from over 10 Gbp data by de novo assembly. By mapping the raw reads to the de novo transcripts, we identified 7,852 differentially expressed genes (log2FC > |10|), in which 4,059 and 3,794 were up-and down-regulated, respectively, in 1B plants compared to 0B plants. Functional enrichment analysis revealed that various differentially expressed genes were involved in cellular processes including the cell cycle, chromosome breakage and repair, and microtubule formation; all of which may be related to the occurrence and maintenance of B chromosomes. Our data provide insight into transcriptomic changes and evolution of plant B chromosomes and deliver an informative database for future study of B chromosome transcriptomes in the Korean lily.
Collapse
Affiliation(s)
- Doori Park
- Department of Molecular Biosciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea.,Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon 24341, Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
Su P, Gao L, Liu S, Guan H, Wang J, Zhang Y, Zhao Y, Hu T, Tu L, Zhou J, Ma B, Liu X, Huang L, Gao W. Probing the function of protein farnesyltransferase in Tripterygium wilfordii. PLANT CELL REPORTS 2019; 38:211-220. [PMID: 30506368 DOI: 10.1007/s00299-018-2363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
We found two subunits FTase/GGTaseI-α and FTase-β formed a heterodimer to transfer a farnesyl group from FPP to protein N-dansyl-GCVLS, confirming they are responsible for protein farnesylation in planta. Tripterygium wilfordii is a medicinal plant with a broad spectrum of anti-inflammatory, immunosuppressive and anti-cancer activities. Recently, a number of studies have focused on investigating the biosynthetic pathways of its bioactive compounds, whereas little attention has been paid to the enzymes which play important roles in regulating diverse developmental processes of T. wilfordii. In this study, we report for the first time the identification and characterization of two subunits of farnesyltransferase (FTase), farnesyltransferase/geranylgeranyltransferase I-α (TwFTase/GGTase I-α) and farnesyltransferase-β (TwFTase-β), in this important medicinal plant. Cell-free in vivo assays, yeast two-hybrid (Y2H) and pull-down assays showed that the two subunits interact with each other to form a heterodimer to perform the role of specifically transferring a farnesyl group from FPP to the CAAX-box protein N-dansyl-GCVLS. Furthermore, we discovered that the two subunits had the same cytoplasmic localization pattern and displayed the same tissue expression pattern. These results indicated that we identified a functional TwFTase enzyme which contains two functionally complementary subunits TwFTase/GGTase I-α and TwFTase-β, which provides us promising genetic targets to construct transgenic plants or screen for more adaptable T. wilfordii mutants, which are able to survive in changing environments.
Collapse
Affiliation(s)
- Ping Su
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongyu Guan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Xihong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 10069, China.
| |
Collapse
|
15
|
Jo Y, Cho WK. RNA viromes of the oriental hybrid lily cultivar "Sorbonne". BMC Genomics 2018; 19:748. [PMID: 30316297 PMCID: PMC6186116 DOI: 10.1186/s12864-018-5138-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lily is a perennial flowering plant belonging to the genus Lilium in the family Liliaceae. Most cultivated lily plants are propagated by bulbs. Therefore, numerous lily bulbs are frequently infected by diverse viruses causing viral diseases. To date, no study has examined the viromes of plants of one type with identical genetic backgrounds collected from different geographical regions. RESULTS Here, we examined different viromes of the lily cultivar "Sorbonne" using 172 gigabytes of transcriptome data composed of 23 libraries from four different projects for the cultivar "Sorbonne." We identified 396 virus-associated contigs from all but one library. We identified six different viruses, including Plantago asiatica mosaic virus (PlAMV), Cucumber mosaic virus (CMV), Lily symptomless virus (LSV), Tulip virus X (TVX), Lily mottle virus (LMoV), and Tobacco rattle virus (TRV). Of them, PlAMV was the most common virus infecting the lily. Scale and flower samples possessed a high number of virus-associated reads. We assembled 32 nearly complete genomes for the six identified viruses possessing the polyadenylate tails. Genomes of all six viruses were highly conserved in the lily cultivar "Sorbonne" based on mutation analysis. We identified defective RNAs from LSV, TVX, and PlAMV localized in the triple gene block region. Phylogenetic analyses showed that virus genomes are highly correlated with geographical regions and host plants. CONCLUSIONS We conducted comprehensive virome analyses of a single lily cultivar, "Sorbonne," using transcriptome data. Our results shed light on an array of lily virome-associated topics, including virus identification, the dominant virus, virus accumulation in different plant tissues, virus genome assembly, virus mutation, identification of defective RNAs, and phylogenetic relationships of identified viruses. Taken together, we provide very useful methods and valuable results that can be applied in other virome-associated studies.
Collapse
Affiliation(s)
- Yeonhwa Jo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
16
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|