1
|
López ME, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemägi A. Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch. Mol Ecol 2025; 34:e17659. [PMID: 39846218 DOI: 10.1111/mec.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole-genome sequencing (WGS) on a large population dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess how the choice of outlier-calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome-environment association (GEA) analysis with allele frequency-based approaches, we estimated composite selection signals (CSS) and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5'UTR and 3'UTR) highlighting the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse range of species.
Collapse
Affiliation(s)
- María-Eugenia López
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Lilian Pukk
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Moulistanos A, Papasakellariou K, Kavakiotis I, Gkagkavouzis K, Karaiskou N, Antonopoulou E, Triantafyllidis A, Papakostas S. Genomic Signatures of Domestication in European Seabass ( Dicentrarchus labrax L.) Reveal a Potential Role for Epigenetic Regulation in Adaptation to Captivity. Ecol Evol 2024; 14:e70512. [PMID: 39629177 PMCID: PMC11612516 DOI: 10.1002/ece3.70512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
Genome scans provide a comprehensive method to explore genome-wide variation associated with traits under study. However, linking individual genes to broader functional groupings and pathways is often challenging, yet crucial for understanding the evolutionary mechanisms underlying these traits. This task is particularly relevant for multi-trait processes such as domestication, which are influenced by complex interactions between numerous genetic and non-genetic factors, including epigenetic regulation. As various traits within the broader spectrum of domestication are selected in concert over time, this process offers an opportunity to identify broader functional overlaps and understand the integrated genetic architecture underlying these traits. In this study, we analyzed approximately 600,000 SNPs from a Pool-Seq experiment comparing eight natural-origin and 12 farmed populations of European seabass in the Mediterranean Sea region. We implemented two genome scan approaches and focused on genomic regions supported by both methods, resulting in the identification of 96 candidate genes, including nine CpG islands, which highligt potential epigenetic influences. Many of these genes and CpG islands are in linkage groups previously associated with domestication-related traits. The most significantly overrepresented molecular function was "oxidoreductase activity". Furthermore, a dense network of interactions was identified, connecting 22 of the candidate genes. Within this network, the most significantly enriched pathways and central genes were involved in "chromatin organization", highlighting another potential epigenetic mechanism. Altogether, our findings underscore the utility of interactome-assisted pathway analysis in elucidating the genomic architecture of polygenic traits and suggest that epigenetic regulation may play a crucial role in the domestication of European seabass.
Collapse
Affiliation(s)
- Aristotelis Moulistanos
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Konstantinos Papasakellariou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis Kavakiotis
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| | - Konstantinos Gkagkavouzis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Nikoleta Karaiskou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of SciencesAristotle University of ThessalonikiThessalonikiGreece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI‐AUTH)Balkan CenterThessalonikiGreece
| | - Spiros Papakostas
- Department of Science and TechnologyInternational Hellenic UniversityThessalonikiGreece
| |
Collapse
|
3
|
D'Anatro A, Calvelo J, Feijóo M, Giorello FM. Differential expression analyses and detection of SNP loci associated with environmental variables: Are salinity and temperature factors involved in population differentiation and speciation in Odontesthes? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101262. [PMID: 38861850 DOI: 10.1016/j.cbd.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Environmental factors play a key role in individual adaptation to different local conditions. Because of this, studies about the physiological and genetic responses of individuals exposed to different natural environments offer clues about mechanisms involved in population differentiation, and as a subsequent result, speciation. Marine environments are especially suited to survey this kind of phenomena because they commonly harbor species adapted to different local conditions along a geographic continuum. Silversides belonging to Odontesthes are commonly distributed in tropical and temperate regions of South America and exhibit noticeable phenotypic plasticity, which allows them to adapt to contrasting environments. In this study, the genetic expression of O. argentinensis sampled along the Uruguayan Atlantic coast and estuarine adjacent areas was investigated. In addition, the correlation between individual genotypes and environmental variables was also analysed in O. argentinensis and O. bonariensis. Results obtained suggest a differential expression pattern of low magnitude among individuals from the different areas sampled and a correlation between several SNP loci and environmental variables. The analyses carried out did not show a clear differentiation among individuals sampled along different salinity regimens, but enriched GOTerms seem to be driven by water oxygen content. On the other hand, a total of 46 SNPs analysed in O. argentinensis and O. bonariensis showed a correlation with salinity and temperature. Although none of the correlated SNPs and corresponding genes from our both analyses were directly associated with hypoxia, genes related to the cardiovascular system and muscle cell differentiation were found. All these genes are interesting candidates for future studies since they are closely related to the differentially expressed genes. Although salinity was also mentioned as an important parameter limiting introgression between O. argentinensis and O. bonariensis, it was found that salinity does not drive differential expression in O. argentinensis, but rather oxygen levels. Moreover, salinity does not directly affect the structure and genetic divergence of the populations, they appear to be structured based on their degree of isolation and geographical distance between them. Further studies, like genome-wide analyses, could help to elucidate additional genes adapted to the different environments in these silverside species.
Collapse
Affiliation(s)
- Alejandro D'Anatro
- Laboratorio de Evolución y Sistemática, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Feijóo
- Centro Universitario Regional Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Facundo M Giorello
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| |
Collapse
|
4
|
Zhang L, Leonard N, Passaro R, Luan MS, Van Tuyen P, Han LTN, Cam NH, Vogelnest L, Lynch M, Fine AE, Nga NTT, Van Long N, Rawson BM, Behie A, Van Nguyen T, Le MD, Nadler T, Walter L, Marques-Bonet T, Hofreiter M, Li M, Liu Z, Roos C. Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur. Nat Commun 2024; 15:8531. [PMID: 39358348 PMCID: PMC11447269 DOI: 10.1038/s41467-024-52811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Many mammal species have declining populations, but the consequences of small population size on the genomic makeup of species remain largely unknown. We investigated the evolutionary history, genetic load and adaptive potential of the Cat Ba langur (Trachypithecus poliocephalus), a primate species endemic to Vietnam's famous Ha Long Bay and with less than 100 living individuals one of the most threatened primates in the world. Using high-coverage whole genome data of four wild individuals, we revealed the Cat Ba langur as sister species to its conspecifics of the northern limestone langur clade and found no evidence for extensive secondary gene flow after their initial separation. Compared to other primates and mammals, the Cat Ba langur showed low levels of genetic diversity, long runs of homozygosity, high levels of inbreeding and an excess of deleterious mutations in homozygous state. On the other hand, genetic diversity has been maintained in protein-coding genes and on the gene-rich human chromosome 19 ortholog, suggesting that the Cat Ba langur retained most of its adaptive potential. The Cat Ba langur also exhibits several unique non-synonymous variants that are related to calcium and sodium metabolism, which may have improved adaptation to high calcium intake and saltwater consumption.
Collapse
Affiliation(s)
- Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- International Max Planck Research School for Genome Science (IMPRS-GS), University of Göttingen, Göttingen, Germany.
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Neahga Leonard
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Rick Passaro
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Mai Sy Luan
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Pham Van Tuyen
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Le Thi Ngoc Han
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Nguyen Huy Cam
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, VIC, Australia
| | - Amanda E Fine
- Wildlife Conservation Society (WCS), Health Program, New York, NY, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society (WCS), Vietnam Country Program, Hanoi, Vietnam
| | - Benjamin M Rawson
- World Wildlife Fund for Nature (WWF) International, Gland, Switzerland
| | - Alison Behie
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
| | - Truong Van Nguyen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Minh D Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tilo Nadler
- Three Monkeys Wildlife Conservancy, Nho Quan District, Ninh Binh Province, Ninh Binh, Vietnam
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany.
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| |
Collapse
|
5
|
Izaguirre-Toriz V, Aguirre-Liguori JA, Latorre-Cárdenas MC, Arima EY, González-Rodríguez A. Local adaptation of Pinus leiophylla under climate and land use change models in the Avocado Belt of Michoacán. Mol Ecol 2024; 33:e17424. [PMID: 38813851 DOI: 10.1111/mec.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Climate change and land use change are two main drivers of global biodiversity decline, decreasing the genetic diversity that populations harbour and altering patterns of local adaptation. Landscape genomics allows measuring the effect of these anthropogenic disturbances on the adaptation of populations. However, both factors have rarely been considered simultaneously. Based on a set of 3660 SNPs from which 130 were identified as outliers by a genome-environment association analysis (LFMM), we modelled the spatial turnover of allele frequencies in 19 localities of Pinus leiophylla across the Avocado Belt in Michoacán state, Mexico. Then, we evaluated the effect of climate change and land use change scenarios, in addition to evaluating assisted gene flow strategies and connectivity metrics across the landscape to identify priority conservation areas for the species. We found that localities in the centre-east of the Avocado Belt would be more vulnerable to climate change, while localities in the western area are more threatened by land conversion to avocado orchards. Assisted gene flow actions could aid in mitigating both threats. Connectivity patterns among forest patches will also be modified by future habitat loss, with central and eastern parts of the Avocado Belt maintaining the highest connectivity. These results suggest that areas with the highest priority for conservation are in the eastern part of the Avocado Belt, including the Monarch Butterfly Biosphere Reserve. This work is useful as a framework that incorporates distinct layers of information to provide a more robust representation of the response of tree populations to anthropogenic disturbances.
Collapse
Affiliation(s)
- Vanessa Izaguirre-Toriz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria), Coyoacán, Mexico
| | - Jonás A Aguirre-Liguori
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - María Camila Latorre-Cárdenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Eugenio Y Arima
- Department of Geography and the Environment, University of Texas at Austin, Austin, Texas, USA
| | - Antonio González-Rodríguez
- Laboratorio Nacional de Innovación Ecotecnológica Para la Sustentabilidad (LANIES), Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM Campus Morelia, Morelia, Mexico
| |
Collapse
|
6
|
Baltazar‐Soares M, Britton JR, Pinder A, Harrison AJ, Nunn AD, Quintella BR, Mateus CS, Bolland JD, Dodd JR, Almeida PR, Dominguez Almela V, Andreou D. Seascape genomics reveals limited dispersal and suggests spatially varying selection among European populations of sea lamprey ( Petromyzon marinus). Evol Appl 2023; 16:1169-1183. [PMID: 37360030 PMCID: PMC10286227 DOI: 10.1111/eva.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Sea lamprey Petromyzon marinus is an anadromous and semelparous fish without homing behaviors. Despite being a freshwater, free-living organism for a large part of their life cycle, its adulthood is spent as a parasite of marine vertebrates. In their native European range, while it is well-established that sea lampreys comprise a single nearly-panmictic population, few studies have further explored the evolutionary history of natural populations. Here, we performed the first genome-wide characterization of sea lamprey's genetic diversity in their European natural range. The objectives were to investigate the connectivity among river basins and explore evolutionary processes mediating dispersal during the marine phase, with the sequencing of 186 individuals from 8 locations spanning the North Eastern Atlantic coast and the North Sea with double-digest RAD-sequencing, obtaining a total of 30,910 bi-allelic SNPs. Population genetic analyses reinforced the existence of a single metapopulation encompassing freshwater spawning sites within the North Eastern Atlantic and the North Sea, though the prevalence of private alleles at northern latitudes suggested some limits to the species' dispersal. Seascape genomics suggested a scenario where oxygen concentration and river runoffs impose spatially varying selection across their distribution range. Exploring associations with the abundance of potential hosts further suggested that hake and cod could also impose selective pressures, although the nature of such putative biotic interactions was unresolved. Overall, the identification of adaptive seascapes in a panmictic anadromous species could contribute to conservation practices by providing information for restoration activities to mitigate local extinctions on freshwater sites.
Collapse
Affiliation(s)
- Miguel Baltazar‐Soares
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
- MARE – Marine and Environmental Sciences CentreISPA – Instituto UniversitárioLisbonPortugal
- Department of BiologyUniversity of TurkuTurkuFinland
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Adrian Pinder
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Andrew J. Harrison
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Andrew D. Nunn
- University of HullHull International Fisheries InstituteHullUK
| | - Bernardo R. Quintella
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
- Department of Animal BiologyFaculty of Sciences, University of LisbonLisbonPortugal
| | - Catarina S. Mateus
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
| | | | - Jamie R. Dodd
- University of HullHull International Fisheries InstituteHullUK
| | - Pedro R. Almeida
- MARE—Marine and Environmental Sciences CentreUniversity of ÉvoraÉvoraPortugal
- Department of Biology, School of Sciences and TechnologyUniversity of ÉvoraÉvoraPortugal
| | - Victoria Dominguez Almela
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| |
Collapse
|
7
|
Molecular ecology meets systematic conservation planning. Trends Ecol Evol 2023; 38:143-155. [PMID: 36210287 DOI: 10.1016/j.tree.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023]
Abstract
Integrative and proactive conservation approaches are critical to the long-term persistence of biodiversity. Molecular data can provide important information on evolutionary processes necessary for conserving multiple levels of biodiversity (genes, populations, species, and ecosystems). However, molecular data are rarely used to guide spatial conservation decision-making. Here, we bridge the fields of molecular ecology (ME) and systematic conservation planning (SCP) (the 'why') to build a foundation for the inclusion of molecular data into spatial conservation planning tools (the 'how'), and provide a practical guide for implementing this integrative approach for both conservation planners and molecular ecologists. The proposed framework enhances interdisciplinary capacity, which is crucial to achieving the ambitious global conservation goals envisioned for the next decade.
Collapse
|
8
|
Valette T, Leitwein M, Lascaux JM, Desmarais E, Berrebi P, Guinand B. Redundancy analysis, genome-wide association studies and the pigmentation of brown trout (Salmo trutta L.). JOURNAL OF FISH BIOLOGY 2023; 102:96-118. [PMID: 36218076 DOI: 10.1111/jfb.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The association of molecular variants with phenotypic variation is a main issue in biology, often tackled with genome-wide association studies (GWAS). GWAS are challenging, with increasing, but still limited, use in evolutionary biology. We used redundancy analysis (RDA) as a complimentary ordination approach to single- and multitrait GWAS to explore the molecular basis of pigmentation variation in brown trout (Salmo trutta) belonging to wild populations impacted by hatchery fish. Based on 75,684 single nucleotide polymorphic (SNP) markers, RDA, single- and multitrait GWAS allowed the extraction of 337 independent colour patterning loci (CPLs) associated with trout pigmentation traits, such as the number of red and black spots on flanks. Collectively, these CPLs (i) mapped onto 35 out of 40 brown trout linkage groups indicating a polygenic genomic architecture of pigmentation, (ii) were found to be associated with 218 candidate genes, including 197 genes formerly mentioned in the literature associated to skin pigmentation, skin patterning, differentiation or structure notably in a close relative, the rainbow trout (Onchorhynchus mykiss), and (iii) related to functions relevant to pigmentation variation (e.g., calcium- and ion-binding, cell adhesion). Annotated CPLs include genes with well-known pigmentation effects (e.g., PMEL, SLC45A2, SOX10), but also markers associated with genes formerly found expressed in rainbow or brown trout skins. RDA was also shown to be useful to investigate management issues, especially the dynamics of trout pigmentation submitted to several generations of hatchery introgression.
Collapse
|
9
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
10
|
Lu M, Su M, Liu N, Zhang J. Effects of environmental salinity on the immune response of the coastal fish Scatophagus argus during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:401-410. [PMID: 35472400 DOI: 10.1016/j.fsi.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The coastal aquaculture is characterized with environmental salinity fluctuation, and the effects of salinity stress on the immunity of cultured fish are needed to be further explored. Scatophagus argus is an important species in the wild fisheries and aquaculture industry, it would be of great value to reveal the impact of salinity change on the immune response in this species. Understanding the effects of salinity stress on immune response can provide valuable insights into salinity management in the aquacultural process. The head kidney, which is an organ unique for teleost fish, functions not only as a central immune organ but also as a crucial role in the stress response during which the secretion of immunoregulatory molecules i.e. cytokines is facilitated. In the present study, Individuals of S. argus acclimated to 3 different salinities [0‰ (FW), 10‰ (BW), and 25‰ (SW)] were injected intraperitoneally with A. hydrophila, and then monitored throughout one week. The effects of environmental salinity on the immune response in S. argus stimulated by A. hydrophila infection were investigated. mRNA expression profiles of cytokine genes IL-1β, IL-6, IL-10 and TNF-α in different salinity groups was quite different. mRNA expression of cytokine genes in BW group and SW group rose more quickly and significantly higher than FW group (p < 0.05) at early stages (6-24 hpi) after bacterial injection, and before 96 hpi, the highest value of cytokine expression at each time point was recorded in SW group. Immune parameters such as lysozyme level, complement C3 activity and IgM content in BW and FW groups were lower than SW group at each time point from 24 to 144 hpi after bacterial injection. In addition, leukocyte profiles in the head kidney and blood were also investigated. Although hypoosmotic acclimation could temporarily stimulate monocyte and neutrophil proliferation, it was observed that the number of monocytes, neutrophils and lymphocytes of the head kidney and blood in SW group increased more quickly than BW and FW groups after bacterial infection. Our results indicate that hypoosmotic stress due to the decrease of environmental salinity has suppressive immunoregulatory effects on the immune response of S. argus.
Collapse
Affiliation(s)
- Mengying Lu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Ozerov M, Noreikiene K, Kahar S, Huss M, Huusko A, Kõiv T, Sepp M, López M, Gårdmark A, Gross R, Vasemägi A. Whole-genome sequencing illuminates multifaceted targets of selection to humic substances in Eurasian perch. Mol Ecol 2022; 31:2367-2383. [PMID: 35202502 PMCID: PMC9314028 DOI: 10.1111/mec.16409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mikhail Ozerov
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Kristina Noreikiene
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Siim Kahar
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Ari Huusko
- Natural resources Institute Finland (Luke)PaltamoFinland
| | - Toomas Kõiv
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Margot Sepp
- Chair of Hydrobiology and FisheryInstitute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - María‐Eugenia López
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Riho Gross
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Anti Vasemägi
- Department of Aquatic ResourcesInstitute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Chair of AquacultureInstitute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
12
|
Serranito B, Cavalazzi M, Vidal P, Taurisson-Mouret D, Ciani E, Bal M, Rouvellac E, Servin B, Moreno-Romieux C, Tosser-Klopp G, Hall SJG, Lenstra JA, Pompanon F, Benjelloun B, Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Sci Rep 2021; 11:21363. [PMID: 34725398 PMCID: PMC8560853 DOI: 10.1038/s41598-021-00682-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Small ruminants are suited to a wide variety of habitats and thus represent promising study models for identifying genes underlying adaptations. Here, we considered local Mediterranean breeds of goats (n = 17) and sheep (n = 25) from Italy, France and Spain. Based on historical archives, we selected the breeds potentially most linked to a territory and defined their original cradle (i.e., the geographical area in which the breed has emerged), including transhumant pastoral areas. We then used the programs PCAdapt and LFMM to identify signatures of artificial and environmental selection. Considering cradles instead of current GPS coordinates resulted in a greater number of signatures identified by the LFMM analysis. The results, combined with a systematic literature review, revealed a set of genes with potentially key adaptive roles in relation to the gradient of aridity and altitude. Some of these genes have been previously implicated in lipid metabolism (SUCLG2, BMP2), hypoxia stress/lung function (BMPR2), seasonal patterns (SOX2, DPH6) or neuronal function (TRPC4, TRPC6). Selection signatures involving the PCDH9 and KLH1 genes, as well as NBEA/NBEAL1, were identified in both species and thus could play an important adaptive role.
Collapse
Affiliation(s)
- Bruno Serranito
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France
- CRESCO, Museum National d'Histoire Naturelle (MNHN), 35800, Dinard, France
| | | | - Pablo Vidal
- Universidad Catolica de Valencia, Valencia, Spain
| | - Dominique Taurisson-Mouret
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
- CNRS, UMR 5815, Dynamiques du droit, Université de Montpellier, Montpellier, France
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marie Bal
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
| | | | - Bertrand Servin
- GenPhySE, INRAE, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | | | - Stephen J G Hall
- Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
- National Institute of Agronomic Research (INRA), Regional Centre of Agronomic Research, Beni-Mellal, Morocco
| | - Anne Da Silva
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France.
| |
Collapse
|
13
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
14
|
Vu NTT, Zenger KR, Silva CNS, Guppy JL, Jerry DR. Population Structure, Genetic Connectivity, and Signatures of Local Adaptation of the Giant Black Tiger Shrimp (Penaeus monodon) throughout the Indo-Pacific Region. Genome Biol Evol 2021; 13:evab214. [PMID: 34529049 PMCID: PMC8495139 DOI: 10.1093/gbe/evab214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/04/2022] Open
Abstract
The giant black tiger shrimp (Penaeus monodon) is native to the Indo-Pacific and is the second most farmed penaeid shrimp species globally. Understanding genetic structure, connectivity, and local adaptation among Indo-Pacific black tiger shrimp populations is important for informing sustainable fisheries management and aquaculture breeding programs. Population genetic and outlier detection analyses were undertaken using 10,593 genome-wide single nucleotide polymorphisms (SNPs) from 16 geographically disparate Indo-Pacific P. monodon populations. Levels of genetic diversity were highest for Southeast Asian populations and were lowest for Western Indian Ocean (WIO) populations. Both neutral (n = 9,930) and outlier (n = 663) loci datasets revealed a pattern of strong genetic structure of P. monodon corresponding with broad geographical regions and clear genetic breaks among samples within regions. Neutral loci revealed seven genetic clusters and the separation of Fiji and WIO clusters from all other clusters, whereas outlier loci revealed six genetic clusters and high genetic differentiation among populations. The neutral loci dataset estimated five migration events that indicated migration to Southeast Asia from the WIO, with partial connectivity to populations in both oceans. We also identified 26 putatively adaptive SNPs that exhibited significant Pearson correlation (P < 0.05) between minor allele frequency and maximum or minimum sea surface temperature. Matched transcriptome contig annotations suggest putatively adaptive SNPs involvement in cellular and metabolic processes, pigmentation, immune response, and currently unknown functions. This study provides novel genome-level insights that have direct implications for P. monodon aquaculture and fishery management practices.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Tropical Futures Institute, James Cook University, Singapore
| |
Collapse
|
15
|
Lebedeva D, Muñoz G, Lumme J. New Salinity Tolerant Species of Gyrodactylus (Platyhelminthes, Monogenea) on Intertidal and Supratidal Fish Species from the Chilean Coast. Acta Parasitol 2021; 66:1021-1030. [PMID: 33792830 DOI: 10.1007/s11686-021-00347-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The intertidal and supratidal coastal zone challenges the osmoregulatory capacity of aquatic inhabitants. Four new species of Gyrodactylus ectoparasites on two intertidal fishes from Chile are described based on molecular and morphological analyses. METHODS Monogeneans were found from two fish species, the clingfish Sicyases sanguineus Müller & Troschel, 1843 and the combtooth blenny Scartichthys viridis Valenciennes, 1836. The morphology was described by drawings, and minimal measurements. The parasites were barcoded via the sequencing of the ribosomal DNA over ITS1-5.8S-ITS2. RESULTS The air-breathing clingfish S. sanguineus carried Gyrodactylus amphibius sp. nov., hiding in the ventral sucker formed by the modified pectoral fins of the fish. The intertidal combtooth blenny S. viridis carried three other new species: Gyrodactylus scartichthi sp. nov., Gyrodactylus viridae sp. nov., and Gyrodactylus zietarae sp. nov. CONCLUSION The four new species were all phylogenetically related with the previously described G. chileani Ziętara et al. 2012 on triplefin Helcogrammoides chilensis Cancino, 1960 in the same habitat. Thus, the five Chilean Pacific Gyrodactylus species formed a statistically well-supported (100%) monophyletic clade together with three geographically distant species recorded in Europe. The Chilean Pacific parasites are not related to G. salinae and G. magadiensis, parasites described in extreme osmotic stress environments earlier.
Collapse
Affiliation(s)
- Daria Lebedeva
- Institute of Biology, Karelian Research Centre, RAS Petrozavodsk, Pushkinskaya 11, Republic of Karelia, Russia.
| | - Gabriela Muñoz
- Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Avenida Borgoño 16344, Viña del Mar, Chile
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, POB 3000, 90014, Oulu, Finland
| |
Collapse
|
16
|
Cádiz MI, López ME, Díaz-Domínguez D, Cáceres G, Marin-Nahuelpi R, Gomez-Uchida D, Canales-Aguirre CB, Orozco-terWengel P, Yáñez JM. Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3395-3404. [PMID: 34339816 DOI: 10.1016/j.ygeno.2021.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.
Collapse
Affiliation(s)
- María I Cádiz
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - María E López
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Giovanna Cáceres
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile
| | - Rodrigo Marin-Nahuelpi
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Daniel Gomez-Uchida
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Cristian B Canales-Aguirre
- Centro i~Mar, Universidad de Los Lagos, Camino Chinquihue 6 km, Puerto Montt, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile.
| |
Collapse
|
17
|
Nielsen ES, Henriques R, Beger M, von der Heyden S. Distinct interspecific and intraspecific vulnerability of coastal species to global change. GLOBAL CHANGE BIOLOGY 2021; 27:3415-3431. [PMID: 33904200 DOI: 10.1111/gcb.15651] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Characterising and predicting species responses to anthropogenic global change is one of the key challenges in contemporary ecology and conservation. The sensitivity of marine species to climate change is increasingly being described with forecasted species distributions, yet these rarely account for population level processes such as genomic variation and local adaptation. This study compares inter- and intraspecific patterns of biological composition to determine how vulnerability to climate change, and its environmental drivers, vary across species and populations. We compare species trajectories for three ecologically important southern African marine invertebrates at two time points in the future, both at the species level, with correlative species distribution models, and at the population level, with gradient forest models. Reported range shifts are species-specific and include both predicted range gains and losses. Forecasted species responses to climate change are strongly influenced by changes in a suite of environmental variables, from sea surface salinity and sea surface temperature, to minimum air temperature. Our results further suggest a mismatch between future habitat suitability (where species can remain in their ecological niche) and genomic vulnerability (where populations retain their genomic composition), highlighting the inter- and intraspecific variability in species' sensitivity to global change. Overall, this study demonstrates the importance of considering species and population level climatic vulnerability when proactively managing coastal marine ecosystems in the Anthropocene.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
- Section for Marine Living Resources, Technical University of Denmark, National Institute of Aquatic Resources, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| |
Collapse
|
18
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|
19
|
Xuereb A, D'Aloia CC, Andrello M, Bernatchez L, Fortin MJ. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:909-920. [PMID: 32785955 DOI: 10.1111/cobi.13609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/17/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717 P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype-environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
Collapse
Affiliation(s)
- Amanda Xuereb
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Cassidy C D'Aloia
- Department of Biological Sciences, University of New Brunswick Saint John, 100 Tucker Park Road, Saint John, NB, E2L 4L5, Canada
| | - Marco Andrello
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
20
|
Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM. An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 2021; 30:2495-2510. [PMID: 33826187 DOI: 10.1111/mec.15898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
When populations colonize new areas, both strong selection and strong drift can be experienced due to novel environments and small founding populations, respectively. Empirical studies have predominantly focused on the phenotype when assessing the role of selection, and limited neutral-loci when assessing founder-induced loss of diversity. Consequently, the extent to which processes interact to influence evolutionary trajectories is difficult to assess. Genomic-level approaches provide the opportunity to simultaneously consider these processes. Here, we examine the roles of selection and drift in shaping genomic diversity and divergence in historically documented sequential island colonizations by the silvereye (Zosterops lateralis). We provide the first empirical demonstration of the rapid appearance of highly diverged genomic regions following population founding, the position of which are highly idiosyncratic. As these regions rarely contained loci putatively under selection, it is most likely that these differences arise via the stochastic nature of the founding process. However, selection is required to explain rapid evolution of larger body size in insular silvereyes. Reconciling our genomic data with these phenotypic patterns suggests there may be many genomic routes to the island phenotype, which vary across populations. Finally, we show that accelerated divergence associated with multiple founding steps is the product of genome-wide rather than localized differences, and that diversity erodes due to loss of rare alleles. However, even multiple founder events do not result in divergence and diversity levels seen in evolutionary older subspecies, and therefore do not provide a shortcut to speciation as proposed by founder-effect speciation models.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Kristen C Ruegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
21
|
Chen Y, Gao Y, Huang X, Li S, Zhan A. Local environment-driven adaptive evolution in a marine invasive ascidian ( Molgula manhattensis). Ecol Evol 2021; 11:4252-4266. [PMID: 33976808 PMCID: PMC8093682 DOI: 10.1002/ece3.7322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/04/2022] Open
Abstract
Elucidating molecular mechanisms of environment-driven adaptive evolution in marine invaders is crucial for understanding invasion success and further predicting their future invasions. Although increasing evidence suggests that adaptive evolution could contribute to organisms' adaptation to varied environments, there remain knowledge gaps regarding how environments influence genomic variation in invaded habitats and genetic bases underlying local adaptation for most marine invaders. Here, we performed restriction-site-associated DNA sequencing (RADseq) to assess population genetic diversity and further investigate genomic signatures of local adaptation in the marine invasive ascidian, Molgula manhattensis. We revealed that most invasive populations exhibited significant genetic differentiation, low recent gene flow, and no signal of significant population bottleneck. Based on three genome scan approaches, we identified 109 candidate loci potentially under environmental selection. Redundancy analysis and variance partitioning analysis suggest that local environmental factors, particularly the salinity-related variables, represent crucial evolutionary forces in driving adaptive divergence. Using the newly developed transcriptome as a reference, 14 functional genes were finally obtained with potential roles in salinity adaptation, including SLC5A1 and SLC9C1 genes from the solute carrier gene (SLC) superfamily. Our findings confirm that differed local environments could rapidly drive adaptive divergence among invasive populations and leave detectable genomic signatures in marine invaders.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Yangchun Gao
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationInstitute of ZoologyGuangdong Academy of SciencesHaizhu DistrictGuangzhouChina
| | - Xuena Huang
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
| | - Shiguo Li
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| | - Aibin Zhan
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesHaidian DistrictBeijingChina
- University of Chinese Academy of SciencesChinese Academy of SciencesShijingshan DistrictBeijingChina
| |
Collapse
|
22
|
Elizabeth Alter S, Tariq L, Creed JK, Megafu E. Evolutionary responses of marine organisms to urbanized seascapes. Evol Appl 2021; 14:210-232. [PMID: 33519966 PMCID: PMC7819572 DOI: 10.1111/eva.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Many of the world's major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard-surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps.
Collapse
Affiliation(s)
- S. Elizabeth Alter
- Department of Biology & ChemistryCalifornia State University, Monterey BayChapman Academic Science CenterSeasideCAUSA
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Laraib Tariq
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| | - James Keanu Creed
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Emmanuel Megafu
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| |
Collapse
|
23
|
Andrello M, Noirot C, Débarre F, Manel S. MetaPopGen 2.0: A multilocus genetic simulator to model populations of large size. Mol Ecol Resour 2020; 21:596-608. [PMID: 33030758 DOI: 10.1111/1755-0998.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/05/2020] [Accepted: 09/23/2020] [Indexed: 11/27/2022]
Abstract
Multilocus genetic processes in subdivided populations can be complex and difficult to interpret using theoretical population genetics models. Genetic simulators offer a valid alternative to study multilocus genetic processes in arbitrarily complex scenarios. However, the use of forward-in-time simulators in realistic scenarios involving high numbers of individuals distributed in multiple local populations is limited by computation time and memory requirements. These limitations increase with the number of simulated individuals. We developed a genetic simulator, MetaPopGen 2.0, to model multilocus population genetic processes in subdivided populations of arbitrarily large size. It allows for spatial and temporal variation in demographic parameters, age structure, adult and propagule dispersal, variable mutation rates and selection on survival and fecundity. We developed MetaPopGen 2.0 in the R environment to facilitate its use by non-modeler ecologists and evolutionary biologists. We illustrate the capabilities of MetaPopGen 2.0 for studying adaptation to water salinity in the striped red mullet Mullus surmuletus.
Collapse
Affiliation(s)
- Marco Andrello
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Christelle Noirot
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Florence Débarre
- Sorbonne Université, CNRS, INRAE, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Paris, France
| | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
24
|
Vu NTT, Zenger KR, Guppy JL, Sellars MJ, Silva CNS, Kjeldsen SR, Jerry DR. Fine-scale population structure and evidence for local adaptation in Australian giant black tiger shrimp (Penaeus monodon) using SNP analysis. BMC Genomics 2020; 21:669. [PMID: 32993495 PMCID: PMC7526253 DOI: 10.1186/s12864-020-07084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restrictions to gene flow, genetic drift, and divergent selection associated with different environments are significant drivers of genetic differentiation. The black tiger shrimp (Penaeus monodon), is widely distributed throughout the Indian and Pacific Oceans including along the western, northern and eastern coastline of Australia, where it is an important aquaculture and fishery species. Understanding the genetic structure and the influence of environmental factors leading to adaptive differences among populations of this species is important for farm genetic improvement programs and sustainable fisheries management. RESULTS Based on 278 individuals obtained from seven geographically disparate Australian locations, 10,624 high-quality SNP loci were used to characterize genetic diversity, population structure, genetic connectivity, and adaptive divergence. Significant population structure and differentiation were revealed among wild populations (average FST = 0.001-0.107; p < 0.05). Eighty-nine putatively outlier SNPs were identified to be potentially associated with environmental variables by using both population differentiation (BayeScan and PCAdapt) and environmental association (redundancy analysis and latent factor mixed model) analysis methods. Clear population structure with similar spatial patterns were observed in both neutral and outlier markers with three genetically distinct groups identified (north Queensland, Northern Territory, and Western Australia). Redundancy, partial redundancy, and multiple regression on distance matrices analyses revealed that both geographical distance and environmental factors interact to generate the structure observed across Australian P. monodon populations. CONCLUSION This study provides new insights on genetic population structure of Australian P. monodon in the face of environmental changes, which can be used to advance sustainable fisheries management and aquaculture breeding programs.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia. .,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Melony J Sellars
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,CSIRO Agriculture & Food, Integrated Sustainable Aquaculture Production Program, Queensland Bioscience Precinct, St Lucia, 4067, Australia.,Present address: Genics Pty Ltd, Level 5, Gehrmann Building. 60 Research Road, St Lucia, QLD, 4067, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
25
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
26
|
Anderson J, Song BH. Plant adaptation to climate change - Where are we? JOURNAL OF SYSTEMATICS AND EVOLUTION 2020; 58:533-545. [PMID: 33584833 PMCID: PMC7875155 DOI: 10.1111/jse.12649] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Climate change poses critical challenges for population persistence in natural communities, agriculture and environmental sustainability, and food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and if adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in-depth understanding of these eco-evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function, to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting-edge omics toolkits, novel ecological strategies, newly-developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.
Collapse
Affiliation(s)
- Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Authors for correspondence. Bao-Hua Song. ; Jill Anderson.
| |
Collapse
|
27
|
Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican golden trout (Oncorhynchus chrysogaster). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Gouin N, Bertin A, Espinosa MI, Snow DD, Ali JM, Kolok AS. Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113099. [PMID: 31600702 DOI: 10.1016/j.envpol.2019.113099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Agrichemical contamination can provoke evolutionary responses in freshwater populations. It is a particularly relevant issue in semi-arid regions due to the sensitivity of endemic species to pollutants and to interactions with temperature stress. This paper investigates the presence of pesticides in rivers within a semi-arid agricultural watershed of Chile, testing for their effects on population genetic characteristics of the endemic mayfly Andesiops torrens (Insecta, Ephemeroptera). Pesticides were detected in sediment samples in ten out of the 30 sites analyzed throughout the upper part of the Limarí watershed. To study the evolutionary impact of such contamination on A. torrens, we used a genome-wide approach and analyzed 2056 single nucleotide polymorphisms (SNPs) loci in 551 individuals from all sites. Genetic differentiation was weak between populations, suggesting high gene flow across the study area. While we did not find evidence of pesticide effects on genetic diversity nor on population differentiation, the allele frequency of three outlier SNP loci correlated significantly with pesticide occurrence. Interrogation of genomic resources indicates that two of these SNPs are located within functional genes that encode for the low-density lipoprotein receptor-related protein 2 and Dumpy, both potentially involved in insect cuticle resistance processes. Such genomic signatures of local adaptation are indicative of past adverse effects of pesticide exposure on the locally adapted populations. Our results reveal that A. torrens is sensitive to pesticide exposure, but that a high gene flow may confer resilience to contamination. This research supports the contention that A. torrens is an ideal model organism to study evolutionary responses induced by pesticides on non-target, endemic species.
Collapse
Affiliation(s)
- Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile; Centro de Estudios Avanzados Zonas en Áridas, Raúl Bitrán, 1305, La Serena, Chile.
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Mara I Espinosa
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0844, United States.
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 83844-3002, United States.
| |
Collapse
|
29
|
Manel S. Smoothing technical and computational obstacles in gene-environment associations. Mol Ecol Resour 2019; 19:1385-1387. [PMID: 31657533 DOI: 10.1111/1755-0998.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/08/2019] [Accepted: 08/23/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Stéphanie Manel
- CEFE UMR 5175, CNRS, PSL Research University, Montpellier, France
| |
Collapse
|
30
|
Jeffries KM, Connon RE, Verhille CE, Dabruzzi TF, Britton MT, Durbin‐Johnson BP, Fangue NA. Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evol Appl 2019; 12:1212-1226. [PMID: 31293632 PMCID: PMC6597873 DOI: 10.1111/eva.12799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In estuary and coastal systems, human demand for freshwater, climate change-driven precipitation variability, and extreme weather impact salinity levels, reducing connectivity between mesohaline coastal fish populations and potentially contributing to genomic divergence. We examined gill transcriptome responses to salinity in wild-caught juveniles from two populations of Sacramento splittail (Pogonichthys macrolepidotus), a species of conservation concern that is endemic to the San Francisco Estuary, USA, and the lower reaches of its tributaries. Recent extreme droughts have led to salinities above the tolerance limits for this species, creating a migration barrier between these populations, which potentially contributed to population divergence. We identified transcripts involved in a conserved response to salinity; however, the more salinity-tolerant San Pablo population had greater transcriptome plasticity (3.6-fold more transcripts responded than the Central Valley population) and a response consistent with gill remodeling after 168 hr of exposure to elevated salinity. The reorganization of the gill in response to changing osmotic gradients is a process critical for acclimation and would facilitate enhanced salinity tolerance. We detected an upregulation of receptors that control the Wnt (wingless-type) cell signaling pathway that may be required for an adaptive response to increases in salinity, patterns not observed in the relatively salinity-sensitive Central Valley population. We detected 62 single nucleotide polymorphisms (SNPs) in coding regions of 26 transcripts that differed between the populations. Eight transcripts that contained SNPs were associated with immune responses, highlighting the importance of diversity in immune gene sequences as a defining characteristic of genomic divergence between these populations. Our data demonstrate that these populations have divergent transcriptomic responses to salinity, which is consistent with observed physiological differences in salinity tolerance.
Collapse
Affiliation(s)
- Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Anatomy, Physiology & Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCalifornia
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
| | - Richard E. Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCalifornia
| | - Christine E. Verhille
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
- Present address:
Department of EcologyMontana State UniversityBozemanMontana
| | - Theresa F. Dabruzzi
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
- Present address:
Biology DepartmentSaint Anselm CollegeManchesterNew Hampshire
| | - Monica T. Britton
- Bioinformatics Core Facility, Genome CenterUniversity of CaliforniaDavisCalifornia
| | | | - Nann A. Fangue
- Wildlife, Fish & Conservation BiologyUniversity of CaliforniaDavisCalifornia
| |
Collapse
|
31
|
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ 2019; 7:e6806. [PMID: 31106053 PMCID: PMC6497040 DOI: 10.7717/peerj.6806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The seagrass, Zostera capensis, occurs across a broad stretch of coastline and wide environmental gradients in estuaries and sheltered bays in southern and eastern Africa. Throughout its distribution, habitats are highly threatened and poorly protected, increasing the urgency of assessing the genomic variability of this keystone species. A pooled genomic approach was employed to obtain SNP data and examine neutral genomic variation and to identify potential outlier loci to assess differentiation across 12 populations across the ∼9,600 km distribution of Z. capensis. Results indicate high clonality and low genomic diversity within meadows, which combined with poor protection throughout its range, increases the vulnerability of this seagrass to further declines or local extinction. Shared variation at outlier loci potentially indicates local adaptation to temperature and precipitation gradients, with Isolation-by-Environment significantly contributing towards shaping spatial variation in Z. capensis. Our results indicate the presence of two population clusters, broadly corresponding to populations on the west and east coasts, with the two lineages shaped only by frequency differences of outlier loci. Notably, ensemble modelling of suitable seagrass habitat provides evidence that the clusters are linked to historical climate refugia around the Last Glacial Maxi-mum. Our work suggests a complex evolutionary history of Z. capensis in southern and eastern Africa that will require more effective protection in order to safeguard this important ecosystem engineer into the future.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert John Toonen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Ingrid Knapp
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Sophie von der Heyden
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
32
|
Xuereb A, D’Aloia CC, Daigle RM, Andrello M, Dalongeville A, Manel S, Mouillot D, Guichard F, Côté IM, Curtis JMR, Bernatchez L, Fortin MJ. Marine Conservation and Marine Protected Areas. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2018_63] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin M, Lasram F, Belmaker J, Rocklin D, Manel S. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl 2018; 11:1437-1447. [PMID: 30151051 PMCID: PMC6099820 DOI: 10.1111/eva.12638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic variation, as a basis of evolutionary change, allows species to adapt and persist in different climates and environments. Yet, a comprehensive assessment of the drivers of genetic variation at different spatial scales is still missing in marine ecosystems. Here, we investigated the influence of environment, geographic isolation, and larval dispersal on the variation in allele frequencies, using an extensive spatial sampling (47 locations) of the striped red mullet (Mullus surmuletus) in the Mediterranean Sea. Univariate multiple regressions were used to test the influence of environment (salinity and temperature), geographic isolation, and larval dispersal on single nucleotide polymorphism (SNP) allele frequencies. We used Moran's eigenvector maps (db-MEMs) and asymmetric eigenvector maps (AEMs) to decompose geographic and dispersal distances in predictors representing different spatial scales. We found that salinity and temperature had only a weak effect on the variation in allele frequencies. Our results revealed the predominance of geographic isolation to explain variation in allele frequencies at large spatial scale (>1,000 km), while larval dispersal was the major predictor at smaller spatial scale (<1,000 km). Our findings stress the importance of including spatial scales to understand the drivers of spatial genetic variation. We suggest that larval dispersal allows to maintain gene flows at small to intermediate scale, while at broad scale, genetic variation may be mostly shaped by adult mobility, demographic history, or multigenerational stepping-stone dispersal. These findings bring out important spatial scale considerations to account for in the design of a protected area network that would efficiently enhance protection and persistence capacity of marine species.
Collapse
Affiliation(s)
- Alicia Dalongeville
- EPHE, Biogéographie et Ecologie des VertébrésCEFE, UMR 5175, CNRSPSL Research UniversityUniversité de MontpellierUniversité Paul‐Valéry MontpellierMontpellierFrance
- MARBEC, UMR 9190, CNRS, IRDUniversité Montpellier – IfremerMontpellierFrance
| | - Marco Andrello
- EPHE, Biogéographie et Ecologie des VertébrésCEFE, UMR 5175, CNRSPSL Research UniversityUniversité de MontpellierUniversité Paul‐Valéry MontpellierMontpellierFrance
| | - David Mouillot
- MARBEC, UMR 9190, CNRS, IRDUniversité Montpellier – IfremerMontpellierFrance
| | - Stéphane Lobreaux
- Laboratoire d'Ecologie AlpineUMR‐CNRS 5553Université Joseph FourierGrenobleFrance
| | - Marie‐Josée Fortin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Frida Lasram
- Laboratoire d'Océanologie et de GéosciencesUMR 8187 LOG CNRSUniversité du Littoral Côte d'OpaleWimereuxFrance
| | - Jonathan Belmaker
- Department of Zoology and the Steinhardt Museum of Natural HistoryTel Aviv UniversityTel AvivIsrael
| | - Delphine Rocklin
- Faculty of Humanities and Social SciencesDepartment of GeographyMemorial University of NewfoundlandSt John'sNLCanada
| | - Stéphanie Manel
- EPHE, Biogéographie et Ecologie des VertébrésCEFE, UMR 5175, CNRSPSL Research UniversityUniversité de MontpellierUniversité Paul‐Valéry MontpellierMontpellierFrance
| |
Collapse
|
34
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|