1
|
Maity U, Aggarwal R, Balasubramanian R, Venkatraman DL, R Hegde S. Devising Isolation Forest-Based Method to Investigate the sRNAome of Mycobacterium tuberculosis Using sRNA-seq Data. Bioinform Biol Insights 2024; 18:11779322241263674. [PMID: 39091283 PMCID: PMC11292719 DOI: 10.1177/11779322241263674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
Small non-coding RNAs (sRNAs) regulate the synthesis of virulence factors and other pathogenic traits, which enables the bacteria to survive and proliferate after host infection. While high-throughput sequencing data have proved useful in identifying sRNAs from the intergenic regions (IGRs) of the genome, it remains a challenge to present a complete genome-wide map of the expression of the sRNAs. Moreover, existing methodologies necessitate multiple dependencies for executing their algorithm and also lack a targeted approach for the de novo sRNA identification. We developed an Isolation Forest algorithm-based method and the tool Prediction Of sRNAs using Isolation Forest for the de novo identification of sRNAs from available bacterial sRNA-seq data (http://posif.ibab.ac.in/). Using this framework, we predicted 1120 sRNAs and 46 small proteins in Mycobacterium tuberculosis. Besides, we highlight the context-dependent expression of novel sRNAs, their probable synthesis, and their potential relevance in stress response mechanisms manifested by M. tuberculosis.
Collapse
Affiliation(s)
- Upasana Maity
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Ritika Aggarwal
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Novartis Pharmaceuticals, Hyderabad, India
| | | | | | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
2
|
Sensing Host Health: Insights from Sensory Protein Signature of the Metagenome. Appl Environ Microbiol 2022; 88:e0059622. [PMID: 35862686 PMCID: PMC9361814 DOI: 10.1128/aem.00596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human microbiota, which comprises an ensemble of taxonomically and functionally diverse but often mutually cooperating microorganisms, benefits its host by shaping the host immunity, energy harvesting, and digestion of complex carbohydrates as well as production of essential nutrients. Dysbiosis in the human microbiota, especially the gut microbiota, has been reported to be linked to several diseases and metabolic disorders. Recent studies have further indicated that tracking these dysbiotic variations could potentially be exploited as biomarkers of disease states. However, the human microbiota is not geography agnostic, and hence a taxonomy-based (microbiome) biomarker for disease diagnostics has certain limitations. In comparison, (microbiome) function-based biomarkers are expected to have a wider applicability. Given that (i) the host physiology undergoes certain changes in the course of a disease and (ii) host-associated microbial communities need to adapt to this changing microenvironment of their host, we hypothesized that signatures emanating from the abundance of bacterial proteins associated with the signal transduction system (herein referred to as sensory proteins [SPs]) might be able to distinguish between healthy and diseased states. To test this hypothesis, publicly available metagenomic data sets corresponding to three diverse health conditions, namely, colorectal cancer, type 2 diabetes mellitus, and schizophrenia, were analyzed. Results demonstrated that SP signatures (derived from host-associated metagenomic samples) indeed differentiated among healthy individual and patients suffering from diseases of various severities. Our finding was suggestive of the prospect of using SP signatures as early biomarkers for diagnosing the onset and progression of multiple diseases and metabolic disorders. IMPORTANCE The composition of the human microbiota, a collection of host-associated microbes, has been shown to differ among healthy and diseased individuals. Recent studies have investigated whether tracking these variations could be exploited for disease diagnostics. It has been noted that compared to microbial taxonomies, the ensemble of functional proteins encoded by microbial genes are less likely to be affected by changes in ethnicity and dietary preferences. These functions are expected to help the microbe adapt to changing environmental conditions. Thus, healthy individuals might harbor a different set of genes than diseased individuals. To test this hypothesis, we analyzed metagenomes from healthy and diseased individuals for signatures of a particular group of proteins called sensory proteins (SP), which enable the bacteria to sense and react to changes in their microenvironment. Results demonstrated that SP signatures indeed differentiate among healthy individuals and those suffering from diseases of various severities.
Collapse
|
3
|
Khan AA, Singh H, Bilal M, Ashraf MT. Microbiota, probiotics and respiratory infections: the three musketeers can tip off potential management of COVID-19. Am J Transl Res 2021; 13:10977-10993. [PMID: 34786037 PMCID: PMC8581851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Rapid infectivity of SARS-CoV2 with recent viral variants is posing a challenge in the development of robust therapeutic strategies. On the other hand, microbiota is debated for its involvement in SARS-CoV2 infection with varied opinions. Although ample data about the role of microbiota and probiotics in respiratory viral infections are available, their role in COVID-19 is limited albeit emerging rapidly. The utilization of probiotics for the management of COVID-19 is still under investigation in many clinical trials. Existing information coupled with recent COVID-19 related studies can suggest various ways to use microbiota modulation and probiotics for managing this pandemic. Present article indicates the role of microbiota modulation and probiotics in respiratory infections. In addition, scattered evidence was gathered to understand the potential of microbiota and probiotics in the management of SARS-CoV2. Gut-airway microbiota connection is already apparent in respiratory tract viral infections, including SARS-CoV2. Though few clinical trials are evaluating microbiota and probiotics for COVID-19 management, the safety evaluation must be given more serious consideration because of the possibility of opportunistic infections among COVID-19 patients. Nevertheless, the information about microbiota modulation using probiotics and prebiotics can be helpful to manage this outbreak and this review presents different aspects of this idea.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research InstitutePune, Maharashtra 411026, India
| | - HariOm Singh
- Division of Molecular Biology, Indian Council of Medical Research-National AIDS Research InstitutePune, Maharashtra 411026, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian 223003, China
| | - Mohd Tashfeen Ashraf
- School of Biotechnology, Gautam Buddha UniversityGautam Budh Nagar, Greater Noida (UP), India
| |
Collapse
|
4
|
Österberg L, Domenzain I, Münch J, Nielsen J, Hohmann S, Cvijovic M. A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Comput Biol 2021; 17:e1008891. [PMID: 33836000 PMCID: PMC8059808 DOI: 10.1371/journal.pcbi.1008891] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/21/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.
Collapse
Affiliation(s)
- Linnea Österberg
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Julia Münch
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Stefan Hohmann
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Ma S, Huang Y, Xie F, Gong Z, Zhang Y, Stojkoska A, Xie J. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol Chem 2020; 401:331-348. [DOI: 10.1515/hsz-2019-0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
AbstractTuberculosis caused by Mycobacterium tuberculosis remains a serious threat to public health. The M. tuberculosis cell envelope is closely related to its virulence and drug resistance. Mycobacterial membrane large proteins (MmpL) are lipid-transporting proteins of the efflux pump resistance nodulation cell division (RND) superfamily with lipid substrate specificity and non-transport lipid function. Mycobacterial membrane small proteins (MmpS) are small regulatory proteins, and they are also responsible for some virulence-related effects as accessory proteins of MmpL. The MmpL transporters are the candidate targets for the development of anti-tuberculosis drugs. This article summarizes the structure, function, phylogenetics of M. tuberculosis MmpL/S proteins and their roles in host immune response, inhibitors and regulatory system.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Fuling Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| |
Collapse
|
6
|
Bose T, Venkatesh KV, Mande SS. Investigating host-bacterial interactions among enteric pathogens. BMC Genomics 2019; 20:1022. [PMID: 31881845 PMCID: PMC6935094 DOI: 10.1186/s12864-019-6398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant “priority pathogens” that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them. Results Using our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed. Conslusions The identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
7
|
Nandi M, Sikri K, Chaudhary N, Mande SC, Sharma RD, Tyagi JS. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 2019; 20:887. [PMID: 31752669 PMCID: PMC6868718 DOI: 10.1186/s12864-019-6190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.
Collapse
Affiliation(s)
- Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Chaudhary
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
8
|
Rizvi A, Shankar A, Chatterjee A, More TH, Bose T, Dutta A, Balakrishnan K, Madugulla L, Rapole S, Mande SS, Banerjee S, Mande SC. Rewiring of Metabolic Network in Mycobacterium tuberculosis During Adaptation to Different Stresses. Front Microbiol 2019; 10:2417. [PMID: 31736886 PMCID: PMC6828651 DOI: 10.3389/fmicb.2019.02417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic adaptation of Mycobacterium tuberculosis (M. tuberculosis) to microbicidal intracellular environment of host macrophages is fundamental to its pathogenicity. However, an in-depth understanding of metabolic adjustments through key reaction pathways and networks is limited. To understand how such changes occur, we measured the cellular metabolome of M. tuberculosis subjected to four microbicidal stresses using liquid chromatography-mass spectrometric multiple reactions monitoring (LC-MRM/MS). Overall, 87 metabolites were identified. The metabolites best describing the separation between stresses were identified through multivariate analysis. The coupling of the metabolite measurements with existing genome-scale metabolic model, and using constraint-based simulation led to several new concepts and unreported observations in M. tuberculosis; such as (i) the high levels of released ammonia as an adaptive response to acidic stress was due to increased flux through L-asparaginase rather than urease activity; (ii) nutrient starvation-induced anaplerotic pathway for generation of TCA intermediates from phosphoenolpyruvate using phosphoenolpyruvate kinase; (iii) quenching of protons through GABA shunt pathway or sugar alcohols as possible mechanisms of early adaptation to acidic and oxidative stresses; and (iv) usage of alternate cofactors by the same enzyme as a possible mechanism of rewiring metabolic pathways to overcome stresses. Besides providing new leads and important nodes that can be used for designing intervention strategies, the study advocates the strength of applying flux balance analyses coupled with metabolomics to get a global picture of complex metabolic adjustments.
Collapse
Affiliation(s)
- Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arvind Shankar
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | | | | | - Tungadri Bose
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lavanya Madugulla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
9
|
Yousefi Avarvand A, Khademi F, Tafaghodi M, Ahmadipour Z, Moradi B, Meshkat Z. The roles of latency-associated antigens in tuberculosis vaccines. ACTA ACUST UNITED AC 2019; 66:487-491. [DOI: 10.1016/j.ijtb.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
|
10
|
Abstract
Genome-scale metabolic models (GEMs) computationally describe gene-protein-reaction associations for entire metabolic genes in an organism, and can be simulated to predict metabolic fluxes for various systems-level metabolic studies. Since the first GEM for Haemophilus influenzae was reported in 1999, advances have been made to develop and simulate GEMs for an increasing number of organisms across bacteria, archaea, and eukarya. Here, we review current reconstructed GEMs and discuss their applications, including strain development for chemicals and materials production, drug targeting in pathogens, prediction of enzyme functions, pan-reactome analysis, modeling interactions among multiple cells or organisms, and understanding human diseases.
Collapse
Affiliation(s)
- Changdai Gu
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gi Bae Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Won Jun Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Systems Biology and Medicine Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|