1
|
Peng X, Zhang W, Lei C, Min S, Hu J, Wang Q, Sun X. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). BMC Genomics 2022; 23:367. [PMID: 35562654 PMCID: PMC9107115 DOI: 10.1186/s12864-022-08604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Baculoviruses act as effective biological control agents against the invasive pest Hyphantria cunea Drury. In this study, two Chinese Hyphantria cunea nucleopolyhedrovirus (HycuNPV) isolates, HycuNPV-BJ and HycuNPV-HB, were deep sequenced and compared with the Japanese isolate, HycuNPV-N9, to determine whole-genome level diversity and evolutionary history. Results The divergence of the phylogenetic tree and the K2P distances based on 38 core-gene concatenated alignment revealed that two Chinese HycuNPV isolates were a novel species of Alphabaculovirus that infected Hyphantria cunea in China. The gene contents indicated significant differences in the HycuNPV genomes between the Chinese and Japanese isolates. The differences included gene deletions, acquisitions and structural transversions, but the main difference was the high number of single nucleotide polymorphisms (SNPs). In total, 10,393 SNPs, corresponding to approximately 8% of the entire HycuNPV-N9 genome sequence, were detected in the aligned reads. By analyzing non-synonymous variants, we found that hotspot mutation-containing genes had mainly unknown functions and most were early expressing genes. We found that the hycu78 gene which had early and late promoter was under positive selection. Biological activity assays revealed that the infectivity of HycuNPV-HB was greater than that of HycuNPV-BJ, and the killing speed of HycuNPV-HB was faster than that of HycuNPV-BJ. A comparison of molecular genetic characteristics indicated that the virulence differences between the two isolates were affected by SNP and structural variants, especially the homologous repeat regions. Conclusions The genomes of the two Chinese HycuNPV isolates were characterized, they belonged to a novel species of Alphabaculovirus that infected Hyphantria cunea in China. We inferred that the loss or gain of genetic material in the HycuNPV-HB and HycuNPV-BJ genomes resulted in new important adaptive capabilities to the H. cunea host. These results extend the current understanding of the genetic diversity of HycuNPV and will be useful for improving the applicability of this virus as a biological control agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08604-7.
Collapse
Affiliation(s)
- Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenying Zhang
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Shuifa Min
- Hubei Ecology Polytechnic College, Wuhan, 430200, Hubei, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Qinghua Wang
- Institute of Forestry Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Haidian, Beijing, 100091, China.
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
2
|
Genomic diversity in a population of Spodoptera frugiperda nucleopolyhedrovirus. INFECTION GENETICS AND EVOLUTION 2021; 90:104749. [PMID: 33540087 DOI: 10.1016/j.meegid.2021.104749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.
Collapse
|
3
|
Comparative genomic analysis of three geographical isolates from China reveals high genetic stability of Plutella xylostella granulovirus. PLoS One 2021; 16:e0243143. [PMID: 33444318 PMCID: PMC7808651 DOI: 10.1371/journal.pone.0243143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the genomes of three Plutella xylostella granulovirus (PlxyGV) isolates, PlxyGV-W and PlxyGV-Wn from near Wuhan and PlxyGV-B from near Beijing, China were completely sequenced and comparatively analyzed to investigate genetic stability and diversity of PlxyGV. PlxyGV-W, PlxyGV-B and PlxyGV-Wn consist of 100,941bp, 100,972bp and 100,999bp in length with G + C compositions of 40.71–40.73%, respectively, and share nucleotide sequence identities of 99.5–99.8%. The three individual isolates contain 118 putative protein-encoding ORFs in common. PlxyGV-W, PlxyGV-B and PlxyGV-Wn have ten, nineteen and six nonsynonymous intra isolate nucleotide polymorphisms (NPs) in six, fourteen and five ORFs, respectively, including homologs of five DNA replication/late expression factors and two per os infectivity factors. There are seventeen nonsynonymous inter isolate NPs in seven ORFs between PlxyGV-W and PlxyGV-B, seventy three nonsynonymous NPs in forty seven ORFs between PlxyGV-W and PlxyGV-Wn, seventy seven nonsynonymous NPs in forty six ORFs between PlxyGV-B and PlxyGV-Wn. Alignment of the genome sequences of nine PlxyGV isolates sequenced up to date shows that the sequence homogeneity between the genomes are over 99.4%, with the exception of the genome of PlxyGV-SA from South Africa, which shares a sequence identity of 98.6–98.7% with the other ones. No events of gene gain/loss or translocations were observed. These results suggest that PlxyGV genome is fairly stable in nature. In addition, the transcription start sites and polyadenylation sites of thirteen PlxyGV-specific ORFs, conserved in all PlxyGV isolates, were identified by RACE analysis using mRNAs purified from larvae infected by PlxyGV-Wn, proving the PlxyGV-specific ORFs are all genuine genes.
Collapse
|
4
|
Fan J, Jehle JA, Wennmann JT. Population structure of Cydia pomonella granulovirus isolates revealed by quantitative analysis of genetic variation. Virus Evol 2021; 7:veaa073. [PMID: 33505705 PMCID: PMC7816688 DOI: 10.1093/ve/veaa073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Genetic diversity of viruses is driven by genomic mutations and selection through its host, resulting in differences in virulence as well as host responses. For baculoviruses, which are naturally occurring pathogens of insects and which are frequently sprayed on hundred thousands to millions of hectares as biocontrol agents of insect pests, the phenomenon of virus-host co-evolution is of particular scientific interest and economic importance because high virulence of baculovirus products is essential and emergence of host resistance needs to be avoided as much as possible. In the present study, the population structure of twenty isolates of the Cydia pomonella granulovirus (CpGV), including twelve isolates from different geographic origins and eight commercial formulations, were studied on the basis of next-generation sequencing data and by analyzing the distribution of single nucleotide polymorphisms (SNPs). An entirely consensus sequence-free quantitative SNP analysis was applied for the identification of 753 variant SNP sites being specific for single as well as groups of CpGV isolates. Based on the quantitative SNP analysis, homogenous, heterogenous as well as mixed isolates were identified and their proportions of genotypes were deciphered, revealing a high genetic diversity of CpGV isolates from around the world. Based on hierarchical clustering on principal components (HCPC), six distinct isolate/group clusters were identified, representing the proposed main phylogenetic lineages of CpGV but comprising full genome information from virus mixtures. The relative location of different isolates in HCPC reflected the proportion of variable compositions of different genotypes. The established methods provide novel analysis tools to decipher the molecular complexity of genotype mixtures in baculovirus isolates, thus depicting the population structure of baculovirus isolates in a more adequate form than consensus based analyses.
Collapse
Affiliation(s)
- Jiangbin Fan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Johannes A Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| | - Jörg T Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Inglis PW, Santos LAVM, Craveiro SR, Ribeiro BM, Castro MEB. Mosaic genome evolution and phylogenetics of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and virulence of seven new isolates from the Brazilian states of Minas Gerais and Mato Grosso. Arch Virol 2021; 166:125-138. [PMID: 33111162 DOI: 10.1007/s00705-020-04858-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
In a comparative analysis of genome sequences from isolates of the baculovirus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) from Brazil and Guatemala, we identified a subset of isolates possessing chimeric genomes. We identified six distinct phylogenetically incongruous regions (PIRs) dispersed in the genomes, of between 279 and 3345 bp in length. The individual PIRs possessed high sequence similarity among the affected ChinNPV isolates but varied in coverage in some instances. The donor for four of the PIRs implicated in horizontal gene transfer (HGT) was identified as Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), an alphabaculovirus closely related to ChinNPV, or another unknown but closely related virus. BLAST searches of the other two PIRs returned only ChinNPV sequences, but HGT from an unknown donor baculovirus cannot be excluded. Although Chrysodeixis includens and Trichoplusia ni are frequently co-collected from soybean fields in Brazil, pathogenicity data suggest that natural coinfection of C. includens larvae with ChinNPV and TnSNPV is probably uncommon. Additionally, since the chimeric ChinNPV genomes with tracts of TnSNPV sequence were restricted to a single monophyletic lineage of closely related isolates, a model of progressive restoration of the native DNA sequence by recombination with ChinNPV possessing a fully or partially non-chimeric genome is reasonable. However, multiple independent HGT from TnSNPV to ChinNPV during the evolution of these isolates cannot be excluded. Mortality data suggest that the ChinNPV isolates with chimeric genomes are not significantly different in pathogenicity towards C. includens when compared to most other ChinNPV isolates. Exclusion of the PIRs prior to phylogenetic analysis had a large impact on the topology of part of the maximum-likelihood tree, revealing a homogenous clade of three isolates (IB, IC and ID) from Paraná state in Brazil collected in 2006, together with an isolate from Guatemala collected in 1972 (IA), comprising the lineage uniquely affected by HGT from TnSNPV. The other 10 Brazilian ChinNPV isolates from Paraná, Mato Grosso, and Minas Gerais states showed higher variability, where only three isolates from Paraná state formed a monophyletic group correlating with geographical origin.
Collapse
Affiliation(s)
- Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil.
| | - Luis Arthur V M Santos
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília-UnB, Brasília, DF, Brazil
| | - Maria Elita B Castro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brazil
| |
Collapse
|
6
|
Wennmann JT, Fan J, Jehle JA. Bacsnp: Using Single Nucleotide Polymorphism (SNP) Specificities and Frequencies to Identify Genotype Composition in Baculoviruses. Viruses 2020; 12:v12060625. [PMID: 32526997 PMCID: PMC7354547 DOI: 10.3390/v12060625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
Natural isolates of baculoviruses (as well as other dsDNA viruses) generally consist of homogenous or heterogenous populations of genotypes. The number and positions of single nucleotide polymorphisms (SNPs) from sequencing data are often used as suitable markers to study their genotypic composition. Identifying and assigning the specificities and frequencies of SNPs from high-throughput genome sequencing data can be very challenging, especially when comparing between several sequenced isolates or samples. In this study, the new tool “bacsnp”, written in R programming langue, was developed as a downstream process, enabling the detection of SNP specificities across several virus isolates. The basis of this analysis is the use of a common, closely related reference to which the sequencing reads of an isolate are mapped. Thereby, the specificities of SNPs are linked and their frequencies can be used to analyze the genetic composition across the sequenced isolate. Here, the downstream process and analysis of detected SNP positions is demonstrated on the example of three baculovirus isolates showing the fast and reliable detection of a mixed sequenced sample.
Collapse
|
7
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
8
|
Fan J, Wennmann JT, Wang D, Jehle JA. Single nucleotide polymorphism (SNP) frequencies and distribution reveal complex genetic composition of seven novel natural isolates of Cydia pomonella granulovirus. Virology 2019; 541:32-40. [PMID: 31826844 DOI: 10.1016/j.virol.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022]
Abstract
The co-evolution between baculoviruses and their insect hosts results in selection of virus populations. To explore this phenomenon at the molecular level, seven natural isolates of Cydia pomonella granulovirus (CpGV) collected from orchards in northwest China were studied using Illumina next generation sequencing (NGS). A total of 540 genome positions with single nucleotide polymorphisms (SNPs) were detected in comparison with known CpGV isolates. New members of previously defined phylogenetic genome groups A, D and E of CpGV, as well as two novel phylogenetic lines, termed genome group F and G, were identified. Combining SNP frequency distribution with the prevalence of genome group-specific SNPs, revealed that six isolates of CpGV were mixtures of different ratios of at least two genotypes, whereas only one isolate, CpGV-WW, was genetically highly homogeneous. This study significantly extends our current understanding of the genetic diversity of CpGV and opens new lines of application of this virus.
Collapse
Affiliation(s)
- Jiangbin Fan
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Heinrichstraße 243, 64287, Darmstadt, Germany.
| |
Collapse
|
9
|
Ferreira BC, Melo FL, Silva AMR, Sanches MM, Moscardi F, Ribeiro BM, Souza ML. Biological and molecular characterization of two Anticarsia gemmatalis multiple nucleopolyhedrovirus clones exhibiting contrasting virulence. J Invertebr Pathol 2019; 164:23-31. [PMID: 30930188 DOI: 10.1016/j.jip.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Baculovirus natural populations are known to be genetically heterogeneous and such genotypic diversity could have implications in the performance of biocontrol agents. The Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) has been widely used to control the velvetbean caterpillar, Anticarsia gemmatalis, in Brazil. In the present work, morphological and molecular analyses as well as the biological activity of AgMNPV genotypes derived from a Brazilian field isolate (AgMNPV-79) were carried out. The existence of genotypic variants in the population was confirmed by DNA restriction analysis. Although difference in virulence was observed among the variants, the most (Ag79-01) and the least (AgL-16) virulent clones do not show any morphological and cytopathological changes when compared to the most studied isolate (AgMNPV-2D). The complete genome analysis of the two viral clones showed the presence of single open reading frames (ORFs) of the pe-38 and he65 genes, which contrasts with the two split ORFs present in the genome of the AgMNPV-2D isolate. The viral clone AgL-16 has many variations in the ie-2 and pe-38 genes, which are transcription regulatory genes responsible for the regulation of viral early gene expression during insect cell infection. Furthermore, other genes showed alterations like the odv-e56, which have an essential role in the maturation and envelopment of the ODVs, and bro-a and bro-b genes which were fused to form a single ORF. For the Ag79-01, although the total number of single nucleotide variants (SNVs) was more prominent in the pe-38 gene, its genome showed very few modifications in comparison to the AgMNPV-2D genome.
Collapse
Affiliation(s)
- B C Ferreira
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil; Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - F L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - A M R Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - M M Sanches
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | - F Moscardi
- Embrapa Soja, CEP 86001-970 Londrina, PR, Brazil
| | - B M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - M L Souza
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil.
| |
Collapse
|