1
|
Wang D, Ma S, Yan M, Dong M, Zhang M, Zhang T, Zhang T, Zhang X, Xu L, Huang X. DNA methylation patterns in the peripheral blood of Xinjiang brown cattle with variable somatic cell counts. Front Genet 2024; 15:1405478. [PMID: 39045327 PMCID: PMC11263093 DOI: 10.3389/fgene.2024.1405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
The use of wide-ranging dairy herd improvement (DHI) measurements has resulted in the investigation of somatic cell count (SCC) and the identification of many genes associated with mastitis resistance. In this study, blood samples of Xinjiang brown cattle with different SCCs were collected, and genome-wide DNA methylation was analyzed by MeDIP-seq. The results showed that peaks were mostly in intergenic regions, followed by introns, exons, and promoters. A total of 1,934 differentially expressed genes (DEGs) associated with mastitis resistance in Xinjiang brown cattle were identified. The enrichment of differentially methylated CpG islands of the TRAPPC9 and CD4 genes was analyzed by bisulfate genome sequencing. The methylation rate of differentially methylated CpGs was higher in the TRAPPC9 gene of cattle with clinical mastitis (mastitis group) compared with healthy cattle (control group), while methylation of differentially methylated CpGs was significantly lower in CD4 of the mastitis group compared with the control group. RT-qRCR analysis showed that the mastitis group had significantly reduced expression of CD4 and TRAPPC9 genes compared to the control group (p < 0.05). Furthermore, Mac-T cells treated with lipopolysaccharide and lipoteichoic acid showed significant downregulation of the TRAPPC9 gene in the mastitis group compared with the control group. The identified epigenetic biomarkers provide theoretical reference for treating cow mastitis, breeding management, and the genetic improvement of mastitis resistance in Xinjiang brown cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
3
|
Liu L, Zhang Y, Ma H, Cao H, Liu W. Integrating genome-wide methylation and transcriptome-wide analyses to reveal the genetic mechanism of milk traits in Kazakh horses. Gene 2023; 856:147143. [PMID: 36574934 DOI: 10.1016/j.gene.2022.147143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Horse Milk has important quantitative characteristics and high economic value. However, the DNA methylation regulators involved in horse milk traits have not been clarified. To explore the important role of genome-wide DNA methylation in regulating equine milk yield, this study systematically investigated the genome-wide DNA methylation profiles of Kazakh horse blood by comparing a high-production group (HP, average daily milk yield of 7.5 kg) and low-production group (LP, average daily milk yield of 3.2 kg) using deep whole-genome bisulfite sequencing. First, both groups showed similar proportions of methylation at CpG sites. Subsequently, we identified 26,677 differential methylated regions (DMRs) of CG, 15 DMRs of CHG, 480 DMRs of CHH and 8268 DMR-related genes (DMGs). GO and KEGG analyses revealed that some DMGs were involved in regulating milk and milk component formation. By combining the WGBS-seq and the previous RNA-seq data, a total of 94 overlapping genes were obtained. Finally, we found that 9 DMGs are likely involved in milk production by Kazakh horses.
Collapse
Affiliation(s)
- Lingling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yunting Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haiyu Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
4
|
Liu X, Tang Y, Wu J, Liu JX, Sun HZ. Feedomics provides bidirectional omics strategies between genetics and nutrition for improved production in cattle. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:314-319. [PMID: 35600547 PMCID: PMC9097626 DOI: 10.1016/j.aninu.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing the efficiency and sustainability of cattle production is an effective way to produce valuable animal proteins for a growing human population. Genetics and nutrition are the 2 major research topics in selecting cattle with beneficial phenotypes and developing genetic potentials for improved performance. There is an inextricable link between genetics and nutrition, which urgently requires researchers to uncover the underlying molecular mechanisms to optimize cattle production. Feedomics integrates a range of omic techniques to reveal the mechanisms at different molecular levels related to animal production and health, which can provide novel insights into the relationships of genes and nutrition/nutrients. In this review, we summarized the applications of feedomics techniques to reveal the effect of genetic elements on the response to nutrition and investigate how nutrients affect the functional genome of cattle from the perspective of both nutrigenetics and nutrigenomics. We highlighted the roles of rumen microbiome in the interactions between host genes and nutrition. Herein, we discuss the importance of feedomics in cattle nutrition research, with a view to ensure that cattle exhibit the best production traits for human consumption from both genetic and nutritional aspects.
Collapse
|
5
|
Ibeagha-Awemu EM, Yu Y. Consequence of epigenetic processes on animal health and productivity: is additional level of regulation of relevance? Anim Front 2021; 11:7-18. [PMID: 34934525 PMCID: PMC8683131 DOI: 10.1093/af/vfab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Ying Yu
- Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Wang M, Bissonnette N, Dudemaine PL, Zhao X, Ibeagha-Awemu EM. Whole Genome DNA Methylation Variations in Mammary Gland Tissues from Holstein Cattle Producing Milk with Various Fat and Protein Contents. Genes (Basel) 2021; 12:1727. [PMID: 34828333 PMCID: PMC8618717 DOI: 10.3390/genes12111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Milk fat and protein contents are among key elements of milk quality, and they are attracting more attention in response to consumers' demand for high-quality dairy products. To investigate the potential regulatory roles of DNA methylation underlying milk component yield, whole genome bisulfite sequencing was employed to profile the global DNA methylation patterns of mammary gland tissues from 17 Canada Holstein cows with various milk fat and protein contents. A total of 706, 2420 and 1645 differentially methylated CpG sites (DMCs) were found between high vs. low milk fat (HMF vs. LMF), high vs. low milk protein (HMP vs. LMP), and high vs. low milk fat and protein (HMFP vs. LMFP) groups, respectively (q value < 0.1). Twenty-seven, 56 and 67 genes harboring DMCs in gene regions (denoted DMC genes) were identified for HMF vs. LMF, HMP vs. LMP and HMFP vs. LMFP, respectively. DMC genes from HMP vs. LMP and HMFP vs. LMFP comparisons were significantly overrepresented in GO terms related to aerobic electron transport chain and/or mitochondrial ATP (adenosine triphosphate) synthesis coupled electron transport. A total of 83 (HMF vs. LMF), 708 (HMP vs. LMP) and 408 (HMFP vs. LMFP) DMCs were co-located with 87, 147 and 158 quantitative trait loci (QTL) for milk component and yield traits, respectively. In conclusion, the identified methylation changes are potentially involved in the regulation of milk fat and protein yields, as well as the variation in reported co-located QTLs.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada;
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (M.W.); (N.B.); (P.-L.D.)
| |
Collapse
|
7
|
Zhang Y, Chaput C, Fournier E, Prunier J, Sirard MA. Comparing the whole genome methylation landscape of dairy calf blood cells revealed intergenerational inheritance of the maternal metabolism. Epigenetics 2021; 17:705-714. [PMID: 34304691 DOI: 10.1080/15592294.2021.1955188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study evaluated the hypothesis that the maternal metabolic stressed status could be inherited to their F1 daughters via epigenetic mechanism. The maternal cow blood β-hydroxybutyric acid (BHB) level (≥0.9 mM/L) was used as an indicator of maternal metabolic stress. Eight newborn daughters' blood cells were used for methylation comparison and analysis. By Whole Genome Bisulphite Sequencing (WGBS), a total of 1,861 Differentially Methylated Regions (DMRs), including 944 differentially methylated cytosines (DMCs), were identified. Most DMRs were distributed in intronic and intergenic regions, and most of the DMR in promoter regions were hypermethylated. Differentially methylated genes (DMGs) with DMR methylation differences higher than 20% were mainly enriched in metabolism-related pathways. These results suggest that newborn calves' metabolic pathways were altered, with 64 DMGs being clustered with metabolic signalling by KEGG analysis. Our study revealed the whole epigenetic landscape of calf blood cells and suggested that the maternal metabolic status can affect the embryo's epigenetic status and metabolic-related pathways in offspring, providing further evidence for epigenetic intergenerational inheritance of metabolic stress in domestic animals. Besides, this study also contributed more evidence to support the Developmental Origins of Health and Disease (DOHAD) theory in large animals.
Collapse
Affiliation(s)
- Ying Zhang
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - Catherine Chaput
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - Eric Fournier
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - Julien Prunier
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| |
Collapse
|
8
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
DNA methylation studies in cattle. J Appl Genet 2021; 62:121-136. [PMID: 33400132 DOI: 10.1007/s13353-020-00604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Investigation of the role of epigenetics in cattle breeding is gaining importance. DNA methylation represents an epigenetic modification which is essential for genomic stability and maintenance of development. Recently, DNA methylation research in cattle has intensified. The studies focus on the definition of methylomes in various organs and tissues in relation to the expression of genes underlying economically important traits, and explore methylome changes under developmental, environmental, disease, and diet influences. The investigations further characterize the methylation patterns of gametes in connection with their quality, and study methylome alterations in the developing naturally or assisted produced zygotes, embryos, and fetuses, considering their viability. A wide array of technologies developed for accurate and precise analysis of DNA methylation patterns is employed for both single-gene and genome-wide studies. Overall, the research is directed towards the identification of single methylation markers or their combinations which may be useful in the selection and breeding of animals to ensure cattle improvement.
Collapse
|
10
|
Fan X, Han W, Teng L, Jiang P, Zhang X, Xu D, Li C, Pellegrini M, Wu C, Wang Y, Kaczurowski MJS, Lin X, Tirichine L, Mock T, Ye N. Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. THE NEW PHYTOLOGIST 2020; 225:234-249. [PMID: 31419316 PMCID: PMC6916402 DOI: 10.1111/nph.16125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. This contribution provides the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterized by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long noncoding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. The data herein provide evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation and metabolism in brown algae.
Collapse
Affiliation(s)
- Xiao Fan
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghai201306China
| | - Wentao Han
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Linhong Teng
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- College of Life ScienceDezhou UniversityDezhou253023China
- Shandong Key Laboratory of BiophysicsDezhou UniversityDezhou253023China
| | - Peng Jiang
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Dong Xu
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | - Chang Li
- University of Chinese Academy of SciencesShenzhenChina
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental BiologyInstitute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCA90095USA
| | - Chunhui Wu
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Yitao Wang
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
| | | | - Xin Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean & Earth SciencesXiamen UniversityXiamenChina
| | - Leila Tirichine
- CNRS UMR 6286Faculté des Sciences et des TechniquesUniversité de Nantes2 rue de la Houssinière44322NantesFrance
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Naihao Ye
- Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdaoChina
| |
Collapse
|
11
|
Genetic and Epigenetic Regulation of Immune Response and Resistance to Infectious Diseases in Domestic Ruminants. Vet Clin North Am Food Anim Pract 2019; 35:405-429. [PMID: 31590895 DOI: 10.1016/j.cvfa.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are the outcome of complex interactions between the host, pathogen, and environment. After exposure to a pathogen, the host immune system uses various mechanisms to remove the pathogen. However, environmental factors and characteristics of pathogens can compromise the host immune responses and subsequently alter the outcome of infection. In this article, genetic and epigenetic factors that shape the individual variation in mounting protective responses are reviewed. Different approaches that have been used by researchers to investigate the genetic regulation of immunity in ruminants and various sources of genetic information are discussed.
Collapse
|
12
|
Zhao H, Zhang S, Wu X, Pan C, Li X, Lei C, Chen H, Lan X. DNA methylation pattern of the goat PITX1 gene and its effects on milk performance. Arch Anim Breed 2019; 62:59-68. [PMID: 31807614 PMCID: PMC6852879 DOI: 10.5194/aab-62-59-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/24/2019] [Indexed: 12/23/2022] Open
Abstract
Paired-like homeodomain transcription factor 1 (PITX1) is a pivotal
gene in the hypothalamic–pituitary–adrenal axis, which is a well-known
pathway affecting lactation performance. The aim of this study was to analyze
the DNA methylation profile of the PITX1 gene and its relevance to
milk performance in Xinong Saanen dairy goats; thus, potential epigenetic
markers of lactation performance were identified. A total of 267 goat blood
samples were divided into “low” and “high” groups according to two milk
traits: the average milk yield (AMY) and the average milk density (AMD). One
CpG island in the 3′-flanking region of the PITX1 gene was
identified as being related to milk performance. Fisher's exact test
demonstrated that the methylation rates of the overall CpG island and the 3rd
and 12th CpG-dinucleotide loci in the blood were significantly associated
with the AMY, and the overall methylation rate of the high AMY group was
relative hypomethylation compared with the low AMY group. The overall
methylation rates of this CpG island in mammary gland tissue from dry and
lactation periods again exhibited a significant difference: the lactation
period showed relative hypomethylation compared with the dry period.
Bioinformatic transcription factor binding site prediction identified some
lactation performance related transcription factors in this CpG island, such
as CTCF, STAT, SMAD, CDEF, SP1, and KLFS. Briefly, overall methylation
changes of the CpG island in the PITX1 gene are relevant to
lactation performance, which will be valuable for future studies and
epigenetic marker-assisted selection (eMAS) in the breeding of goats with
respect to lactation performance.
Collapse
Affiliation(s)
- Haiyu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianfeng Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Li
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing 100194, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|