1
|
Chai Y, Li S, Wu H, Meng Y, Fu Y, Li H, Wu G, Jiang J, Chen T, Jiao Y, Chen Q, Du L, Li L, Man C, Chen S, Gao H, Zhang W, Wang F. The genome landscape of the Xinglong buffalo. BMC Genomics 2024; 25:1054. [PMID: 39511485 PMCID: PMC11542305 DOI: 10.1186/s12864-024-10941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Xinglong buffalo, as an indigenous breed in Hainan province of China, possesses characteristics such as high humidity tolerance, disease resistance and high reproductive capacity. Combined with whole genome sequencing technology, comprehensive investigation can be undertaken to elucidate the genomic characteristics, functions and genetic variation of Xinglong buffalo population. RESULTS Xinglong buffalo has the highest genetic diversity, lowest runs of homozygosity average length, and fasted decay of linkage disequilibrium in our study population. Phylogenetic tree results revealed that Xinglong buffalo was gathered together with Fuzhong buffalo firstly. The population genetic structure analysis indicates that at K = 3, the Xinglong buffalo for the first time showed a distinct ancestral origin from other water buffalo. Furthermore, compared to different populations, candidate genes displaying significantly distinct patterns of single nucleotide polymorphisms (SNPs) (e.g., RYR2, COX15, PCDH9, DTWD2, FCRL5) distribution have been identified in the Xinglong buffalo. CONCLUSIONS Based on the whole genome sequencing data, this study identified a substantial number of SNPs and assessed the genetic diversity and selection signatures within the Xinglong buffalo population. These results contribute to understanding the genomic characteristics of Xinglong buffalo and their genetic evolutionary status. However, the practical significance of these signatures for genetic enhancement still requires confirmation through additional samples and further experimental validation.
Collapse
Affiliation(s)
- Yuan Chai
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- College of Agronomy, Animal Husbandry and Bioengineering, Xing An Vocational and Technical College, Wulanhote, 137400, People's Republic of China
| | - Shiyuan Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hui Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong Meng
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yujing Fu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hong Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Guansheng Wu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Junming Jiang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Taoyu Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Yuqing Jiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Qiaoling Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Li Du
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Lianbin Li
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Churiga Man
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Si Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China
| | - Hongyan Gao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| | - Fengyang Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, 570228, People's Republic of China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
2
|
Chen L, Hui L, Li J. The multifaceted role of insulin-like growth factor binding protein 7. Front Cell Dev Biol 2024; 12:1420862. [PMID: 39081862 PMCID: PMC11286461 DOI: 10.3389/fcell.2024.1420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Insulin-like growth factor binding protein 7 (IGFBP7) serves as a crucial extracellular matrix protein, exerting pivotal roles in both physiological and pathological processes. This comprehensive review meticulously delineates the structural attributes of IGFBP7, juxtaposing them with other members within the IGFBP families, and delves into the expression patterns across various tissues. Furthermore, the review thoroughly examines the multifaceted functions of IGFBP7, encompassing its regulatory effects on cell proliferation, apoptosis, and migration, elucidating the underlying mechanistic pathways. Moreover, it underscores the compelling roles in tumor progression, acute kidney injury, and reproductive processes. By rigorously elucidating the diverse functionalities and regulatory networks of IGFBP7 across various physiological and pathological contexts, this review aims to furnish a robust theoretical framework and delineate future research trajectories for leveraging IGFBP7 in disease diagnosis, therapeutic interventions, and pharmaceutical innovations.
Collapse
Affiliation(s)
| | | | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Han ZP, Yang RZ, Zhou W, Zhang LL, Wang JR, Liu CJ, Liu SD. Population structure and selection signal analysis of indigenous sheep from the southern edge of the Taklamakan Desert. BMC Genomics 2024; 25:681. [PMID: 38982349 PMCID: PMC11232224 DOI: 10.1186/s12864-024-10581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.
Collapse
Affiliation(s)
- Zhi-Peng Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Rui-Zhi Yang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Lu-Lu Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Jie-Ru Wang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Chun-Jie Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Shu-Dong Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China.
| |
Collapse
|
4
|
Dias MS, Pedrosa VB, Rocha da Cruz VA, Silva MR, Batista Pinto LF. Genome-wide association and functional annotation analysis for the calving interval in Nellore cattle. Theriogenology 2024; 218:214-222. [PMID: 38350227 DOI: 10.1016/j.theriogenology.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Calving interval (CI) measures the number of days between two consecutive calves of the same cow, and previous studies based on phenotype and pedigree data reported low heritability for this trait. However, the genetic architecture of CI in the Nellore breed was not evaluated based on genomic data. Thus, this study aimed to estimate the heritability based on genomic data and carry out a genome-wide association study (GWAS) for CI in the Nellore breed, using 12,599 pedigree records, 5078 CI records, and 3818 animals genotyped with 50k SNPchip panel. Both quality control and GWAS were performed in BLUPF90 family packages, which use the single-step genomic best linear unbiased predictor (ssGBLUP) method. The average CI was 427.6 days, with a standard deviation of 106.9 and a total range of 270-730 days. The heritability estimate was 0.04 ± 0.04. The p-values of GWAS analysis resulted in a genomic inflation factor (lambda) of 1.08. The only significant SNP (rs136725686) at the genome-wide level (p-value = 1.53E-06) was located on BTA13. Other 19 SNPs were significant at the chromosome-wide level, distributed on BTA1, 2, 3, 6, 10, 13, 14, 17, 18, 22, and 26. Functional annotation analysis found thirty-six protein-coding genes, including genes related to cell cycle (RAD21, BCAR3), oocyte function (LHX8, CLPX, UTP23), immune system (TXK, TEC, NFATC2), endocrine function (LRRFIP2, GPR158), estrous cycle (SLC38A7), and female fertility (CCK, LYZL4, TRAK1, FOXP1, STAC). Therefore, CI is a complex trait with small heritability in Nellore cattle, and various biological processes may be involved with the genetic architecture of CI in Nellore cattle.
Collapse
Affiliation(s)
- Mayra Silva Dias
- Federal University of Bahia, Animal Science Department, Av. Milton Santos, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| | | | | | - Marcio Ribeiro Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, SP, 16700-000, Brazil.
| | - Luis Fernando Batista Pinto
- Federal University of Bahia, Animal Science Department, Av. Milton Santos, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
5
|
Wei K, Lu Y, Ma X, Duan A, Lu X, Abdel-Shafy H, Deng T. Transcriptome-Wide Association Study Reveals Potentially Candidate Genes Responsible for Milk Production Traits in Buffalo. Int J Mol Sci 2024; 25:2626. [PMID: 38473873 DOI: 10.3390/ijms25052626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Identifying key causal genes is critical for unraveling the genetic basis of complex economic traits, yet it remains a formidable challenge. The advent of large-scale sequencing data and computational algorithms, such as transcriptome-wide association studies (TWASs), offers a promising avenue for identifying potential causal genes. In this study, we harnessed the power of TWAS to identify genes potentially responsible for milk production traits, including daily milk yield (MY), fat percentage (FP), and protein percentage (PP), within a cohort of 100 buffaloes. Our approach began by generating the genotype and expression profiles for these 100 buffaloes through whole-genome resequencing and RNA sequencing, respectively. Through comprehensive genome-wide association studies (GWAS), we pinpointed a total of seven and four single nucleotide polymorphisms (SNPs) significantly associated with MY and FP traits, respectively. By using TWAS, we identified 55, 71, and 101 genes as significant signals for MY, FP, and PP traits, respectively. To delve deeper, we conducted protein-protein interaction (PPI) analysis, revealing the categorization of these genes into distinct PPI networks. Interestingly, several TWAS-identified genes within the PPI network played a vital role in milk performance. These findings open new avenues for identifying potentially causal genes underlying important traits, thereby offering invaluable insights for genomics and breeding in buffalo populations.
Collapse
Affiliation(s)
- Kelong Wei
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Ying Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqian Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xingrong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
6
|
Illa SK, Mumtaz S, Nath S, Mukherjee S, Mukherjee A. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet 2024; 65:167-180. [PMID: 38110827 DOI: 10.1007/s13353-023-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Runs of homozygosity (ROH) are contiguous genomic regions, homozygous across all sites which arise in an individual due to the parents transmitting identical haplotypes to their offspring. The genetic improvement program of Sahiwal cattle after decades of selection needs re-assessment of breeding strategy and population phenomena. Hence, the present study was carried out to optimize input parameters in PLINK for ROH estimates, to explore ROH islands and assessment of pedigree and genome-based inbreeding in Sahiwal cattle. The sliding window approach with parameters standardized to define ROH for the specific population under study was used for the identification of runs. The optimum maximum gap, density, window-snp and window-threshold were 250 Kb, 120 Kb/SNP, 10, 0.05 respectively and ROH patterns were also characterized. ROH islands were defined as the short homozygous genomic regions shared by a large proportion of individuals in a population, containing significantly higher occurrences of ROH than the population specific threshold level. These were identified using the -homozyg-group function of the PLINK v1.9 program. Our results indicated that the Islands of ROH harbor a few candidate genes, ACAD11, RFX4, BANP, UBA5 that are associated with major economic traits. The average FPED (Pedigree based inbreeding coefficient), FROH (Genomic inbreeding coefficient), FHOM (Inbreeding estimated as the ratio of observed and expected homozygous genotypes), FGRM (Inbreeding estimated on genomic relationship method) and FGRM0.5 (Inbreeding estimated from the diagonal of a GRM with allele frequencies near to 0.5) were 0.009, 0.091, 0.035, -0.104 and -0.009, respectively. Our study revealed the optimum parameter setting in PLINK viz. maximal gaps between two SNPs, minimal density of SNPs in a segment (in kb/SNP) and scanning window size to identify ROH segments, which will enable ROH estimation more efficient and comparable across various SNP genotyping-based studies. The result further emphasized the significant role of genomics in unraveling population diversity, selection signatures and inbreeding in the ongoing Sahiwal breed improvement programs.
Collapse
Affiliation(s)
- Satish Kumar Illa
- Livestock Research Station, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Shabahat Mumtaz
- Animal Husbandry Department, Kolkata, West Bengal State, India
| | - Sapna Nath
- College of Veterinary Science, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Sabyasachi Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| | - Anupama Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| |
Collapse
|
7
|
Tran TTH, Tran HS, Le BTN, Van Nguyen S, Vu HA, Kim OTP. Novel single nucleotide polymorphisms of insulin-like growth factor-binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878). Mol Genet Genomics 2023; 298:883-893. [PMID: 37097322 DOI: 10.1007/s00438-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Breeding program to improve economically important growth traits in striped catfish (Pangasianodon hypophthalmus) requires effective molecular markers. This study was conducted to identify single nucleotide polymorphisms (SNPs) of Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) gene which plays multiple roles in regulating growth, energy metabolism and development. The association between SNPs in IGFBP7 gene and growth traits in striped catfish was analyzed in order to uncover the SNPs that have potential to be valuable markers for improving growth traits. Firstly, fragments of IGFBP7 gene from ten fast-growing fish and ten slow-growing fish were sequenced in order to discover SNPs. After filtering the detected SNPs, an intronic SNP (2060A > G) and two non-synonymous SNPs (344 T > C and 4559C > A) causing Leu78Pro and Leu189Met in protein, respectively, were subjected to further validated by individual genotyping in 70 fast-growing fish and 70 slow-growing fish using single base extension method. Our results showed that two SNPs (2060A > G and 4559 C > A (p. Leu189Met)) were significantly associated with the growth in P. hypophthalmus (p < 0.001), thus being candidate SNP markers for the growth traits of this fish. Moreover, linkage disequilibrium and association analysis with growth traits of haplotypes generated from the 3 filtered SNPs (344 T > C, 2060 A > G and 4559 C > A) were examined. These revealed that the non-coding SNP locus (2060A > G) had higher genetic diversity at which the G allele was predominant over the A allele in the fast-growing fish. Furthermore, the results of qPCR showed that expression of IGFBP7 gene with genotype GG (at locus 2060) in fast-growing group was significantly higher than that with genotype AA in slow-growing group (p < 0.05). Our study provides insights into the genetic variants of IGFBP7 gene and useful data source for development molecular marker for growth traits in breeding of the striped catfish.
Collapse
Affiliation(s)
- Trang Thi Huyen Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Hoang Son Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Binh Thi Nguyen Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Sang Van Nguyen
- Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam
| | - Hai-Anh Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Oanh Thi Phuong Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
8
|
Chen C, Zhao X, An Z, Ahmad MJ, Niu K, Zhang X, Nie P, Tang J, Liang A, Yang L. Nasal immunization with AMH-INH-RFRP DNA vaccine for improving follicle development and fertility in buffaloes. Front Endocrinol (Lausanne) 2023; 14:1076404. [PMID: 36891049 PMCID: PMC9986533 DOI: 10.3389/fendo.2023.1076404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Inhibin DNA vaccine has already been proven to improve the fertility of animals. This study aimed to investigate the effects of a novel Anti-Müllerian hormone (AMH)-Inhibin (INH)-RF-amide-related peptides (RFRP) DNA vaccine on immune response and reproductive performance in buffalo. Methods A total of 84 buffaloes were randomly divided into four groups and nasally immunized twice a day with 10 ml of either AMH-INH-RFRP DNA vaccines (3 × 1010 CFU/ml in group T1, 3 × 109 CFU/ml in group T2, and 3 × 108 CFU/ml in group T3) or PBS (as a control) for 3 days, respectively. All animals received a booster dose at an interval of 14 days. Results ELISA assay revealed that primary and booster immunization significantly increased the anti-AMH, anti-INH, and anti-RFRP antibody titers in the T2 group compared with that in the T3 group. After the primary immunization, the antibody positive rate was significantly higher in the T2 group than that in the T3 group. In addition, ELISA results indicated that concentrations of E2, IFN-γ, and IL-4 were significantly higher in the antibody-positive (P) group compared to the antibody-negative (N) group. In contrast, there was no significant difference in the concentrations of P4 between the P and N groups. Ultrasonography results revealed a highly significant increase of 2.02 mm in the diameter of ovulatory follicles in the P group compared to the N group. In parallel, growth speed of dominant follicles was significantly higher in the P group than that in the N group (1.33 ± 1.30 vs 1.13 ± 0.12). Furthermore, compared to N group, the rates of oestrus, ovulation, and conception were also significantly higher in the P group. Conclusion The novel AMH-INH-RFRP DNA vaccine improves the proportion of oestrus, ovulation, and conception in buffalo by promoting the production of E2 and the growth of follicles.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuhong Zhao
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigao An
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pei Nie
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaomei Tang
- College of Veterinary Medicine, Northwest Agricultural and Forestry University, Yangling, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
9
|
Yang Y, Sun X, Cui W, Liu N, Wang K, Qu L, Pan C. The detection of mutation within goat cell division cycle 25 A and its effect on kidding number. Anim Biotechnol 2022; 33:1504-1509. [PMID: 33879023 DOI: 10.1080/10495398.2021.1910519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell division cycle 25 A (CDC25A) accounts for an essential function on early folliculogenesis of female mammals, especially regulating the function of intra-ovarian, thus this gene is pinpointed as a candidate gene that influences the kidding number of goat. On this ground, the purpose of this study was to investigate whether the reported 20-nt nucleotide variants locus (rs639467625) of the CDC25A gene influences kidding number in Shaanbei white cashmere goat (SBWC). The χ2-test showed that there were more ID genotypes in mothers of multiple lambs than in mothers of single lambs. Interestingly, this indel locus was related to the first-born kidding number in the group of SBWC goats (p < 0.05). Similarly, the result of the t-test was consistent with the result of the χ2-test, showed the kidding number of ID genotype individuals was large than that of II individuals (p < 0.05). These findings proved that the different genotypes of CDC25A have impacts on goat kidding numbers. Thus, the results led us to speculate that the ID genotype of CDC25A was one of the main indel influencing goat kidding numbers. Simultaneously, this study was expected to provide useful DNA markers for superior individuals selection by marker-assisted selection (MAS) and make a contribution to goats breeding.
Collapse
Affiliation(s)
- Yuta Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Qu
- College of Life Sciences, Yulin University, Yulin, Shaanxi, PR China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Verma SK, Chandel R, Mahanandia NC, Kumar TVC, Kumar LK, Veerappa VG, Singh D, Onteru SK. A single nucleotide polymorphism of the thyrotropin releasing hormone degrading ectoenzyme (TRHDE) gene is associated with post-partum anestrus in Murrah buffalo. Gene 2022; 834:146580. [PMID: 35598680 DOI: 10.1016/j.gene.2022.146580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Thyrotropin releasing hormone degrading enzyme (TRHDE) gene is implicated in Thyrotropin releasing hormone (TRH) mediated prolactin secretion. It has been shown that the prolactin secretion alters the Gonadotropin-releasinghormone(GnRH) mediated estrous cycle. Therefore, TRHDE may also regulate postpartum anestrus. Earlier studies reported the role of non-synonymous single nucleotide polymorphism (SNPs) in various pathophysiological conditions by altering the structure and function of the proteins. Hence, in the present study, we identified SNPs in the putative promoter, first exon, middle exon and 3'-UTR containing the last exon of TRHDE gene and determined their association with postpartum anestrus (PPA) in Murrah buffaloes. We found one non synonymous SNP (G > C at 118095875 bp on chromosome 4) in the first exon of TRHDE and performed its association analysis in a population sample of 50 extreme PPA (residual PPAI: 123.06 ± 12.98 days) and 50 normal (residual PPAI: -80.46 ± 3.19 days) buffaloes. The residual PPAI value was the observed PPAI adjusted for the effect of 38 non-genetic factors. The analysis showed a significant (P < 0.004167) association of this SNP with PPA in buffaloes. Molecular dynamics simulations (MDS) also supported that the C allele altering Glutamine to Histidine at the amino acid 148 of TRHDE could enhance the stability and rigidity of TRHDE protein, which may lower its activity, increase TRH and prolactin, and reduce GnRH in PPA buffaloes. The MDS analysis further strengthens the association of the SNP (G > C) in the TRHDE gene with PPA condition in Murrah buffaloes. However, further investigation is needed to prove the MDS observations.
Collapse
Affiliation(s)
- Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Rajeev Chandel
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Nimai Charan Mahanandia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Thota Venkata Chaitanya Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Vedamurthy G Veerappa
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India.
| |
Collapse
|
11
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
12
|
Du C, Nan L, Sabek A, Wang H, Luo X, Hua G, Zhang S. Evaluation of Ovsynch versus modified Ovsynch program on pregnancy rate in water buffaloes: a meta-analysis. Trop Anim Health Prod 2021; 53:397. [PMID: 34250554 DOI: 10.1007/s11250-021-02828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Ovsynch is a widely accepted estrus synchronization protocol for improving the reproductive performance of water buffaloes who manifest low reproductive efficiency. Recently, some modified protocols based on Ovsynch such as 2 injections of prostaglandin 14 days apart following the Ovsynch are also introduced to enhance the reproductive potential of this species. In the present study, a meta-analytical assessment was performed with the objective to evaluate the reproductive performance of water buffaloes synchronized with Ovsynch or modified Ovsynch programs. Meta-analysis of the fixed or random effects model was determined by the heterogeneity among the studies. Reproductive outcome of interest was pregnancy per artificial insemination (P/AI) measured on day 25 (25-100). A total of 32 articles including 4003 buffaloes using either Ovsynch or modified Ovsynch protocol were reviewed. In the random effects model for buffaloes, the overall proportion of P/AI was 42.55% [95% confidence interval (CI): 37.48-47.70; n = 3,089] and 46.44% (95% CI: 39.63-53.31; n = 914) on day 25 after AI for Ovsynch and modified Ovsynch, respectively. Results for P/AI were then categorized by ovarian activity, where P/AI was available for 3575 cyclic buffaloes and 320 non-cyclic buffaloes. For cyclic buffaloes, the overall proportion of P/AI was 47.54% (95% CI: 42.72-52.38; n = 2911) and 57.97% (95% CI: 54.12-61.77; n = 664) on day 25 after AI for Ovsynch and modified Ovsynch, respectively. In the fixed effects model for non-cyclic buffaloes, the overall proportion of P/AI was 19.68% (95% CI: 13.48-26.58; n = 167) and 33.01% (95% CI: 25.50-40.94; n = 153) on day 25 after AI for Ovsynch and modified Ovsynch, respectively. In conclusion, a benefit for P/AI is detected in buffaloes with the modified Ovsynch protocol. Besides, whichever estrus synchronization protocols (Ovsynch or modified Ovsynch), cyclic buffaloes have higher P/AI compared with non-cyclic buffaloes.
Collapse
Affiliation(s)
- Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangkang Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sabek
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Egypt
| | - Haitong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuelu Luo
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Thakor PB, Hinsu AT, Bhatia DR, Shah TM, Nayee N, Sudhakar A, Rank DN, Joshi CG. High-throughput genotype-based population structure analysis of selected buffalo breeds. Transl Anim Sci 2021; 5:txab033. [PMID: 33981962 PMCID: PMC8103726 DOI: 10.1093/tas/txab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
India is considered as the home tract of some of the best buffalo breeds. However, the genetic structure of the Indian river buffalo is poorly understood. Hence, there is a need to characterize the populations and understand the genetic structure of various buffalo breeds for selection and to design breeding strategies. In this study, we have analyzed genetic variability and population structure of seven buffalo breeds from their respective geographical regions using Axiom Buffalo Genotyping Array. Diversity, as measured by expected heterozygosity, ranged from 0.364 in Surti to 0.384 in Murrah breed, and pair-wise FST values revealed the lowest genetic distance between Murrah and Nili-Ravi (0.0022), while the highest between Surti and Pandharpuri (0.030). Principal component analysis and structure analysis unveiled the differentiation of Surti, Pandharpuri, and Jaffarabadi in first two principal components and at K = 4, respectively, while remaining breeds were grouped together as a separate single cluster and admixed. Murrah and Mehsana showed early linkage disequilibrium (LD) decay, while Surti breed showed late decay. In LD blocks to quantitative trait locis (QTLs) concordance analysis, 4.65% of concordance was observed with 873 LD blocks overlapped with 2,330 QTLs. Overall, total 4,090 markers were identified from all LD blocks for six types of traits. Results of this study indicated that these single-nucleotide polymorphism (SNP) markers could differentiate phenotypically distinct breeds like Surti, Pandharpuri, and Jaffarabadi but not others. So, there is a need to develop SNP chip based on SNP markers identified by sequence information of local breeds.
Collapse
Affiliation(s)
- Prakash B Thakor
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Ankit T Hinsu
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Dhruv R Bhatia
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Tejas M Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Nilesh Nayee
- National Dairy Development Board, Anand 388001, India
| | - A Sudhakar
- National Dairy Development Board, Anand 388001, India
| | - Dharamshibhai N Rank
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India.,Gujarat Biotechnology Research Centre, Gandhinagar 382017, India
| |
Collapse
|
14
|
Shao B, Sun H, Ahmad MJ, Ghanem N, Abdel-Shafy H, Du C, Deng T, Mansoor S, Zhou Y, Yang Y, Zhang S, Yang L, Hua G. Genetic Features of Reproductive Traits in Bovine and Buffalo: Lessons From Bovine to Buffalo. Front Genet 2021; 12:617128. [PMID: 33833774 PMCID: PMC8021858 DOI: 10.3389/fgene.2021.617128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine and buffalo are important livestock species that have contributed to human lives for more than 1000 years. Improving fertility is very important to reduce the cost of production. In the current review, we classified reproductive traits into three categories: ovulation, breeding, and calving related traits. We systematically summarized the heritability estimates, molecular markers, and genomic selection (GS) for reproductive traits of bovine and buffalo. This review aimed to compile the heritability and genome-wide association studies (GWASs) related to reproductive traits in both bovine and buffalos and tried to highlight the possible disciplines which should benefit buffalo breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57 and there were wide differences between the populations. For some specific traits, such as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for buffalo reproductive traits are limited for age at first calving and calving interval traits. Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine reproductive traits were screened and identified by candidate gene methods and/or GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted due to their crucial relevance with reproductive traits. The distribution of QTLs related to various traits showed a great differences. Few GWAS have been performed so far on buffalo age at first calving, calving interval, and days open traits. In addition, we summarized the GS studies on bovine and buffalo reproductive traits and compared the accuracy between different reports. Taken together, GWAS and candidate gene approaches can help to understand the molecular genetic mechanisms of complex traits. Recently, GS has been used extensively and can be performed on multiple traits to improve the accuracy of prediction even for traits with low heritability, and can be combined with multi-omics for further analysis.
Collapse
Affiliation(s)
- Baoshun Shao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Yifen Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
15
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
16
|
Shabalina T, Yin T, May K, König S. Proofs for genotype by environment interactions considering pedigree and genomic data from organic and conventional cow reference populations. J Dairy Sci 2021; 104:4452-4466. [PMID: 33589254 DOI: 10.3168/jds.2020-19384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to prove genotype by environment interactions (G × E) for production, longevity, and health traits considering conventional and organic German Holstein dairy cattle subpopulations. The full data set included 141,778 Holstein cows from 57 conventional herds and 7,915 cows from 9 organic herds. The analyzed traits were first-lactation milk yield and fat percentage (FP), the length of productive life (LPL) and the health traits mastitis, ovarian cycle disorders, and digital dermatitis in first lactation. A subset of phenotyped cows was genotyped and used for the implementation of separate cow reference populations. After SNP quality controls, the cow reference sets considered 40,830 SNP from 19,700 conventional cows and the same 40,830 SNP from 1,282 organic cows. The proof of possible G × E was made via multiple-trait model applications, considering same traits from the conventional and organic population as different traits. In this regard, pedigree (A), genomic (G) and combined relationship (H) matrices were constructed. For the production traits, heritabilities were very similar in both organic and conventional populations (i.e., close to 0.70 for FP and close to 0.40 for milk yield). For low heritability health traits and LPL, stronger heritability fluctuations were observed, especially for digital dermatitis with 0.05 ± 0.01 (organic, A matrix) to 0.33 ± 0.04 (conventional, G matrix). Quite large genetic correlations between same traits from the 2 environments were estimated for production traits, especially for high heritability FP. For LPL, the genetic correlation was 0.67 (A matrix) and 0.66 (H matrix). The genetic correlation between LPL organic with LPL conventional was 0.94 when considering the G matrix, but only 213 genotyped cows were included. For health traits, genetic correlations were throughout lower than 0.80, indicating possible G × E. Genetic correlations from the different matrices A, G, and H for health and production traits followed the same pattern, but the estimates from G for health traits were associated with quite large standard errors. In genome-wide association studies, significantly associated SNP for production traits overlapped in the conventional and organic population. In contrast, for low heritability LPL and health traits, significantly associated SNP and annotated potential candidate genes differed in both populations. In this regard, significantly associated SNP for mastitis from conventional cows were located on Bos taurus autosomes 6 and 19, but on Bos taurus autosomes 1, 10, and 22 in the organic population. For the remaining health traits and LPL, different potential candidate genes were annotated, but the different genes reflect similar physiological pathways. We found evidence of G × E for low heritability functional traits, suggesting different breeding approaches in organic and conventional populations. Nevertheless, for a verification of results and implementation of alternative breeding strategies, it is imperative to increase the organic cow reference population.
Collapse
Affiliation(s)
- T Shabalina
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany; Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Prof.-Dürwaechter-Platz 1, 85586 Poing, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany.
| |
Collapse
|
17
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
18
|
de Araujo Neto FR, Takada L, Dos Santos DJA, Aspilcueta-Borquis RR, Cardoso DF, do Nascimento AV, Leão KM, de Oliveira HN, Tonhati H. Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reprod Domest Anim 2020; 55:1565-1572. [PMID: 32853485 DOI: 10.1111/rda.13811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
In Brazil, water buffaloes have been used to produce milk for mozzarella cheese production. Consequently, the main selection criterion applied for the buffalo genetic improvement is the estimated mozzarella yield as a function of milk, fat and protein production. However, given the importance of reproductive traits in production systems, this study aimed to use techniques for identifying genomic regions that affect the age at first calving (AFC) and first calving interval (FCI) in buffalo cows and to select candidate genes for the identification of QTL and gene expression studies. The single-step GBLUP method was used for the identification of genomic regions. Windows of 1 Mb containing single-nucleotide polymorphisms were constructed and the 10 windows that explained the greatest proportion of genetic variance were considered candidate regions for each trait. Genes present into the selected windows were identified using the UOA_WB_1 assembly as the reference, and their ontology was defined with the Panther tool. Candidate regions for both traits were identified on BBU 3, 12, 21 and 22; for AFC, candidates were detected on BBU 6, 7, 8, 9 and 15 and for first calving interval on BBU 4, 14 and 19. This study identified regions with great contribution to the additive genetic variance of age at first calving and first calving interval in the population of buffalo cows studied. The ROCK2, PMVK, ADCY2, MAP2K6, BMP10 and GFPT1 genes are main candidates for reproductive traits in water dairy buffaloes, and these results may have future applications in animal breeding programs or in gene expression studies of the species.
Collapse
|
19
|
Ghoreishifar SM, Moradi-Shahrbabak H, Fallahi MH, Jalil Sarghale A, Moradi-Shahrbabak M, Abdollahi-Arpanahi R, Khansefid M. Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo, Bubalus bubalis. BMC Genet 2020; 21:16. [PMID: 32041535 PMCID: PMC7011551 DOI: 10.1186/s12863-020-0824-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Consecutive homozygous fragments of a genome inherited by offspring from a common ancestor are known as runs of homozygosity (ROH). ROH can be used to calculate genomic inbreeding and to identify genomic regions that are potentially under historical selection pressure. The dataset of our study consisted of 254 Azeri (AZ) and 115 Khuzestani (KHZ) river buffalo genotyped for ~ 65,000 SNPs for the following two purposes: 1) to estimate and compare inbreeding calculated using ROH (FROH), excess of homozygosity (FHOM), correlation between uniting gametes (FUNI), and diagonal elements of the genomic relationship matrix (FGRM); 2) to identify frequently occurring ROH (i.e. ROH islands) for our selection signature and gene enrichment studies. Results In this study, 9102 ROH were identified, with an average number of 21.2 ± 13.1 and 33.2 ± 15.9 segments per animal in AZ and KHZ breeds, respectively. On average in AZ, 4.35% (108.8 ± 120.3 Mb), and in KHZ, 5.96% (149.1 ± 107.7 Mb) of the genome was autozygous. The estimated inbreeding values based on FHOM, FUNI and FGRM were higher in AZ than they were in KHZ, which was in contrast to the FROH estimates. We identified 11 ROH islands (four in AZ and seven in KHZ). In the KHZ breed, the genes located in ROH islands were enriched for multiple Gene Ontology (GO) terms (P ≤ 0.05). The genes located in ROH islands were associated with diverse biological functions and traits such as body size and muscle development (BMP2), immune response (CYP27B1), milk production and components (MARS, ADRA1A, and KCTD16), coat colour and pigmentation (PMEL and MYO1A), reproductive traits (INHBC, INHBE, STAT6 and PCNA), and bone development (SUOX). Conclusion The calculated FROH was in line with expected higher inbreeding in KHZ than in AZ because of the smaller effective population size of KHZ. Thus, we find that FROH can be used as a robust estimate of genomic inbreeding. Further, the majority of ROH peaks were overlapped with or in close proximity to the previously reported genomic regions with signatures of selection. This tells us that it is likely that the genes in the ROH islands have been subject to artificial or natural selection.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran.
| | - Mohammad Hossein Fallahi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Ali Jalil Sarghale
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Rostam Abdollahi-Arpanahi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, 33916-53755, Iran
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| |
Collapse
|
20
|
D'Occhio MJ, Ghuman SS, Neglia G, Della Valle G, Baruselli PS, Zicarelli L, Visintin JA, Sarkar M, Campanile G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020; 150:186-192. [PMID: 32000994 DOI: 10.1016/j.theriogenology.2020.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
Seasonal breeding in buffalo is influenced by exogenous (photoperiod, climate, nutrition, management) and endogenous (hormones, genotype) factors. Buffalo are negatively photoperiodic and show a natural increase in fertility during decreasing day length. The hormone melatonin is produced by the pineal gland and has a fundamental role in photoperiodic time measurement within the brain. This drives annual cycles of gonadotropin secretion and gonadal function in buffaloes. Some melatonin is released into the systemic circulation and, together with peripherally produced melatonin, acts at somatic tissues. In the ovaries and testes of buffalo, melatonin acts as an antioxidant and scavenges oxygen free radicals to reduce both oxidative stress and apoptosis. This has beneficial effects on gametogenesis and steroidogenesis. Female buffalo treated with melatonin show an improved response to estrus synchronization protocols in out-of-season breeding. Melatonin acts through melatonin receptors MT1 and MT2 and the gene for MT1 (MTNR1A) is polymorphic in buffaloes. Single nucleotide polymorphisms (SNPs) in gene MTNR1A have been associated with fertility in female buffalo. The knowledge and tools are available to lift the reproductive performance of buffalo. This is highly important as the global demand for nutritious buffalo food products has undergone a sharp rise, and continues to grow. Buffalo can make an important contribution to affordable, nutritious animal protein. This will help address global nutritional security.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarvpreet S Ghuman
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mihir Sarkar
- Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
de Araujo Neto FR, Santos DJDA, Fernandes Júnior GA, Aspilcueta-Borquis RR, Nascimento AVD, de Oliveira Seno L, Tonhati H, de Oliveira HN. Genome-wide association studies for growth traits in buffaloes using the single step genomic BLUP. J Appl Genet 2019; 61:113-115. [PMID: 31673966 DOI: 10.1007/s13353-019-00528-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Growth traits are important for the profitability of buffalo breeding systems, since in general, these animals are raised both for meat and milk. In this study, the single-step genomic BLUP method was employed to prospect the genomic regions' associated with weight at standard ages of 100, 210, 365, and 550 days in a buffalo population, aiming to identify genes with stronger expression for those characteristics. We found 6, 1, 2, and 5 SNPs significantly associated (p value < 10-5) with weight at 100, 210, 365, and 550 days of age, respectively, where those SNPs respectively explained 0.164, 0.040, 0.044, and 0.213% of the additive variance of each trait. SNP AX-85099682 (BBU24) was significant for weight at 100, 210, and 365 days, indicating the existence of a possible QTL affecting the initial growth rate of buffaloes. All told, eight genes (CBLB, TRNAG-UCC, GADD45B, LOC112583811, MGAT4C, KCNMA1, SLC5A2, and TGFB1I1) were identified as candidates for the growth traits of buffaloes. However, molecular and gene expression studies are necessary to validate these genes for subsequent use in programs for genetic improvement of the species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Humberto Tonhati
- Universidade Estadual Paulista Júlio de Mesquita Filho, Câmpus de Jaboticabal, São Paulo, Brazil
| | | |
Collapse
|