1
|
Stephan M, Papiol S, Zhang M, Song J, Frommeyer SM, Haupt H, Jensen N, Kannaiyan N, Gupta R, Schuler P, Picklmann P, McCarthy M, Schulte E, Landen M, Falkai P, Scheuss V, Schulze T, Zhang W, Rossner MJ. Modulation of Neuronal Excitability and Plasticity by BHLHE41 Conveys Lithium Non-Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605130. [PMID: 39372797 PMCID: PMC11451663 DOI: 10.1101/2024.07.25.605130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Many bipolar disorder (BD) patients are non-responsive to lithium. The mechanisms underlying lithium (non-)responsiveness are largely unknown. By using gene-set enrichment analysis methods, we found that core clock gene-sets are significantly associated with lithium response. Among the top hits was BHLHE41, a modulator of the molecular clock and homeostatic sleep. Since BHLHE41 and its paralog BHLHE40 are functionally redundant, we assessed chronic lithium response in double-knockout mutant mice (DKO). We demonstrated that DKOs are non-responsive to lithium's effect in various behavioral tasks. Cellular assays and patch clamp recordings revealed lowered excitability and reduced lithium-response in prefrontal cortical layer 2/3 DKO neurons and on hippocampal long-term potentiation. Single-cell RNA sequencing identified that lithium deregulated mitochondrial respiration, cation channel and postsynapse associated gene-sets specifically in upper layer excitatory neurons. Our findings show that lithium acts in a highly cell-specific way on neuronal metabolism and excitability and modulates synaptic plasticity depending on BHLHE40/41.
Collapse
Affiliation(s)
- Marius Stephan
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Samuel M Frommeyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Helen Haupt
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | | | - Rajinder Gupta
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Philipp Schuler
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Pia Picklmann
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Michael McCarthy
- VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| | - Eva Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Volker Scheuss
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- MSH Medical School, Hamburg, Germany
| | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| |
Collapse
|
2
|
Hwang N, Kang D, Shin SJ, Yoon BK, Chun J, Kim JW, Fang S. Creeping fat exhibits distinct Inflammation-specific adipogenic preadipocytes in Crohn's disease. Front Immunol 2023; 14:1198905. [PMID: 38111581 PMCID: PMC10725931 DOI: 10.3389/fimmu.2023.1198905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Creeping fat (CrF) is an extraintestinal manifestation observed in patients with Crohn's disease (CD). It is characterized by the accumulation of mesenteric adipose tissue (MAT) that wraps around the intestinal wall. Although the role of CrF in CD is still debated, multiple studies have highlighted a correlation between CrF and inflammation, as well as fibrostenosais of the intestine, which contributes to the worsening of CD symptoms. However, the mechanism underlying the potential role of CrF in the development of Crohn's fibrosis remains an enigma. This study aimed to analyze CrF comprehensively using single-cell RNA sequencing analysis. The data was compared with transcriptomic data from adipose tissue in other disease conditions, such as ulcerative colitis, lymphedema, and obesity. Our analysis classified two lineages of preadipocyte (PAC) clusters responsible for adipogenesis and fibrosis in CrF. Committed PACs in CrF showed increased cytokine expression in response to bacterial stimuli, potentially worsening inflammation in patients with CD. We also observed an increase in fibrotic activity in PAC clusters in CrF. Co-analyzing the data from patients with lymphedema, we found that pro-fibrotic PACs featured upregulated pentraxin-3 expression, suggesting a potential target for the treatment of fibrosis in CrF. Furthermore, PACs in CrF exhibited a distinct increase in cell-to-cell communication via cytokines related to inflammation and fibrosis, such as CCL, LIGHT, PDGF, MIF, and SEMA3. Interestingly, these interactions also increased in PACs of the lymphedema, whereas the increased MIF signal of PACs was found to be a distinct characteristic of CrF. In immune cell clusters in CrF, we observed high immune activity of pro-inflammatory macrophages, antigen-presenting macrophages, B cells, and IgG+ plasma cells. Finally, we have demonstrated elevated IgG+ plasma cell infiltration and increased pentraxin-3 protein levels in the fibrotic regions of CrF in CD patients when compared to MAT from both UC patients and healthy individuals. These findings provide new insights into the transcriptomic features related to the inflammation of cells in CrF and suggest potential targets for attenuating fibrosis in CD.
Collapse
Affiliation(s)
- Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwoo Kang
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Du J, Gu XR, Yu XX, Cao YJ, Hou J. Essential procedures of single-cell RNA sequencing in multiple myeloma and its translational value. BLOOD SCIENCE 2023; 5:221-236. [PMID: 37941914 PMCID: PMC10629747 DOI: 10.1097/bs9.0000000000000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm characterized by clonal proliferation of abnormal plasma cells. In many countries, it ranks as the second most prevalent malignant neoplasm of the hematopoietic system. Although treatment methods for MM have been continuously improved and the survival of patients has been dramatically prolonged, MM remains an incurable disease with a high probability of recurrence. As such, there are still many challenges to be addressed. One promising approach is single-cell RNA sequencing (scRNA-seq), which can elucidate the transcriptome heterogeneity of individual cells and reveal previously unknown cell types or states in complex tissues. In this review, we outlined the experimental workflow of scRNA-seq in MM, listed some commonly used scRNA-seq platforms and analytical tools. In addition, with the advent of scRNA-seq, many studies have made new progress in the key molecular mechanisms during MM clonal evolution, cell interactions and molecular regulation in the microenvironment, and drug resistance mechanisms in target therapy. We summarized the main findings and sequencing platforms for applying scRNA-seq to MM research and proposed broad directions for targeted therapies based on these findings.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Ran Gu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao-Xiao Yu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang-Jia Cao
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710000, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Torres-Flores U, Díaz-Espinosa F, López-Santaella T, Rebollar-Vega R, Vázquez-Jiménez A, Taylor IJ, Ortiz-Hernández R, Echeverría OM, Vázquez-Nin GH, Gutierrez-Ruiz MC, De la Rosa-Velázquez IA, Resendis-Antonio O, Hernández-Hernandez A. Spermiogenesis alterations in the absence of CTCF revealed by single cell RNA sequencing. Front Cell Dev Biol 2023; 11:1119514. [PMID: 37065848 PMCID: PMC10097911 DOI: 10.3389/fcell.2023.1119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
CTCF is an architectonic protein that organizes the genome inside the nucleus in almost all eukaryotic cells. There is evidence that CTCF plays a critical role during spermatogenesis as its depletion produces abnormal sperm and infertility. However, defects produced by its depletion throughout spermatogenesis have not been fully characterized. In this work, we performed single cell RNA sequencing in spermatogenic cells with and without CTCF. We uncovered defects in transcriptional programs that explain the severity of the damage in the produced sperm. In the early stages of spermatogenesis, transcriptional alterations are mild. As germ cells go through the specialization stage or spermiogenesis, transcriptional profiles become more altered. We found morphology defects in spermatids that support the alterations in their transcriptional profiles. Altogether, our study sheds light on the contribution of CTCF to the phenotype of male gametes and provides a fundamental description of its role at different stages of spermiogenesis.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Graduate Program in Experimental Biology, DCBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, Mexico
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Fernanda Díaz-Espinosa
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Rosa Rebollar-Vega
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Aarón Vázquez-Jiménez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ian J. Taylor
- BD Life Sciences Informatics, Ashland, OR, United States
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olga M. Echeverría
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo H. Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Concepción Gutierrez-Ruiz
- Laboratorio de Fisiología Celular y Medicina Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Mexico City, Mexico
| | - Inti Alberto De la Rosa-Velázquez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Osbaldo Resendis-Antonio
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| | - Abrahan Hernández-Hernandez
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| |
Collapse
|
5
|
Battenberg K, Kelly ST, Ras RA, Hetherington NA, Hayashi M, Minoda A. A flexible cross-platform single-cell data processing pipeline. Nat Commun 2022; 13:6847. [PMID: 36369450 PMCID: PMC9652453 DOI: 10.1038/s41467-022-34681-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-sequencing analysis to quantify the RNA molecules in individual cells has become popular, as it can obtain a large amount of information from each experiment. We introduce UniverSC ( https://github.com/minoda-lab/universc ), a universal single-cell RNA-seq data processing tool that supports any unique molecular identifier-based platform. Our command-line tool, docker image, and containerised graphical application enables consistent and comprehensive integration, comparison, and evaluation across data generated from a wide range of platforms. We also provide a cross-platform application to run UniverSC via a graphical user interface, available for macOS, Windows, and Linux Ubuntu, negating one of the bottlenecks with single-cell RNA-seq analysis that is data processing for researchers who are not bioinformatically proficient.
Collapse
Affiliation(s)
- Kai Battenberg
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - S Thomas Kelly
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Radu Abu Ras
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Faculty of Automatics, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Nicola A Hetherington
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Aki Minoda
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Liu Z, Li H, Dang Q, Weng S, Duo M, Lv J, Han X. Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cell Mol Life Sci 2022; 79:577. [DOI: 10.1007/s00018-022-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2022]
|
7
|
Raabe FJ, Stephan M, Waldeck JB, Huber V, Demetriou D, Kannaiyan N, Galinski S, Glaser LV, Wehr MC, Ziller MJ, Schmitt A, Falkai P, Rossner MJ. Expression of Lineage Transcription Factors Identifies Differences in Transition States of Induced Human Oligodendrocyte Differentiation. Cells 2022; 11:cells11020241. [PMID: 35053357 PMCID: PMC8773672 DOI: 10.3390/cells11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocytes (OLs) are critical for myelination and are implicated in several brain disorders. Directed differentiation of human-induced OLs (iOLs) from pluripotent stem cells can be achieved by forced expression of different combinations of the transcription factors SOX10 (S), OLIG2 (O), and NKX6.2 (N). Here, we applied quantitative image analysis and single-cell transcriptomics to compare different transcription factor (TF) combinations for their efficacy towards robust OL lineage conversion. Compared with S alone, the combination of SON increases the number of iOLs and generates iOLs with a more complex morphology and higher expression levels of myelin-marker genes. RNA velocity analysis of individual cells reveals that S generates a population of oligodendrocyte-precursor cells (OPCs) that appear to be more immature than those generated by SON and to display distinct molecular properties. Our work highlights that TFs for generating iOPCs or iOLs should be chosen depending on the intended application or research question, and that SON might be beneficial to study more mature iOLs while S might be better suited to investigate iOPC biology.
Collapse
Affiliation(s)
- Florian J. Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Jan Benedikt Waldeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Verena Huber
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Damianos Demetriou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Laura V. Glaser
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Michael C. Wehr
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Michael J. Ziller
- Max Planck Institute of Psychiatry, 80804 Munich, Germany;
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo (USP), São Paulo 05403-903, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany; (F.J.R.); (M.S.); (J.B.W.); (V.H.); (D.D.); (N.K.); (S.G.); (M.C.W.); (A.S.); (P.F.)
- Systasy Bioscience GmbH, 81669 Munich, Germany
- Correspondence:
| |
Collapse
|
8
|
Quek C, Bai X, Long GV, Scolyer RA, Wilmott JS. High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy. Genes (Basel) 2021; 12:1629. [PMID: 34681023 PMCID: PMC8535767 DOI: 10.3390/genes12101629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in single-cell transcriptomics have greatly improved knowledge of complex transcriptional programs, rapidly expanding our knowledge of cellular phenotypes and functions within the tumour microenvironment and immune system. Several new single-cell technologies have been developed over recent years that have enabled expanded understanding of the mechanistic cells and biological pathways targeted by immunotherapies such as immune checkpoint inhibitors, which are now routinely used in patient management with high-risk early-stage or advanced melanoma. These technologies have method-specific strengths, weaknesses and capabilities which need to be considered when utilising them to answer translational research questions. Here, we provide guidance for the implementation of single-cell transcriptomic analysis platforms by reviewing the currently available experimental and analysis workflows. We then highlight the use of these technologies to dissect the tumour microenvironment in the context of cancer patients treated with immunotherapy. The strategic use of single-cell analytics in clinical settings are discussed and potential future opportunities are explored with a focus on their use to rationalise the design of novel immunotherapeutic drug therapies that will ultimately lead to improved cancer patient outcomes.
Collapse
Affiliation(s)
- Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Royal North Shore and Mater Hospitals, Sydney, NSW 2065, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW 2050, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Hoek A, Maibach K, Özmen E, Vazquez-Armendariz AI, Mengel JP, Hain T, Herold S, Goesmann A. WASP: a versatile, web-accessible single cell RNA-Seq processing platform. BMC Genomics 2021; 22:195. [PMID: 33736596 PMCID: PMC7977290 DOI: 10.1186/s12864-021-07469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background The technology of single cell RNA sequencing (scRNA-seq) has gained massively in popularity as it allows unprecedented insights into cellular heterogeneity as well as identification and characterization of (sub-)cellular populations. Furthermore, scRNA-seq is almost ubiquitously applicable in medical and biological research. However, these new opportunities are accompanied by additional challenges for researchers regarding data analysis, as advanced technical expertise is required in using bioinformatic software. Results Here we present WASP, a software for the processing of Drop-Seq-based scRNA-Seq data. Our software facilitates the initial processing of raw reads generated with the ddSEQ or 10x protocol and generates demultiplexed gene expression matrices including quality metrics. The processing pipeline is realized as a Snakemake workflow, while an R Shiny application is provided for interactive result visualization. WASP supports comprehensive analysis of gene expression matrices, including detection of differentially expressed genes, clustering of cellular populations and interactive graphical visualization of the results. The R Shiny application can be used with gene expression matrices generated by the WASP pipeline, as well as with externally provided data from other sources. Conclusions With WASP we provide an intuitive and easy-to-use tool to process and explore scRNA-seq data. To the best of our knowledge, it is currently the only freely available software package that combines pre- and post-processing of ddSEQ- and 10x-based data. Due to its modular design, it is possible to use any gene expression matrix with WASP’s post-processing R Shiny application. To simplify usage, WASP is provided as a Docker container. Alternatively, pre-processing can be accomplished via Conda, and a standalone version for Windows is available for post-processing, requiring only a web browser. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07469-6.
Collapse
Affiliation(s)
- Andreas Hoek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Katharina Maibach
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.,Algorithmic Bioinformatics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Ebru Özmen
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine II, and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), 35392, Giessen, Germany
| | - Jan Philipp Mengel
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany.,Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.,Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| |
Collapse
|
10
|
Yamawaki TM, Lu DR, Ellwanger DC, Bhatt D, Manzanillo P, Arias V, Zhou H, Yoon OK, Homann O, Wang S, Li CM. Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling. BMC Genomics 2021; 22:66. [PMID: 33472597 PMCID: PMC7818754 DOI: 10.1186/s12864-020-07358-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/27/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. RESULTS Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5' v1 and 3' v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. CONCLUSION Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.
Collapse
Affiliation(s)
- Tracy M Yamawaki
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Daniel R Lu
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Daniel C Ellwanger
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Dev Bhatt
- Oncology/Inflammation, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, United States
| | - Paolo Manzanillo
- Oncology/Inflammation, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, United States
| | - Vanessa Arias
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Hong Zhou
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Oh Kyu Yoon
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
11
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
12
|
Single-Cell RNA Sequencing of Hematopoietic Stem and Progenitor Cells Treated with Gemcitabine and Carboplatin. Genes (Basel) 2020; 11:genes11050549. [PMID: 32422951 PMCID: PMC7288450 DOI: 10.3390/genes11050549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Treatments that include gemcitabine and carboplatin induce dose-limiting myelosuppression. The understanding of how human bone marrow is affected on a transcriptional level leading to the development of myelosuppression is required for the implementation of personalized treatments in the future. In this study, we treated human hematopoietic stem and progenitor cells (HSPCs) harvested from a patient with chronic myelogenous leukemia (CML) with gemcitabine/carboplatin. Thereafter, scRNA-seq was performed to distinguish transcriptional effects induced by gemcitabine/carboplatin. Gene expression was calculated and evaluated among cells within and between samples compared to untreated cells. Cell cycle analysis showed that the treatments effectively decrease cell proliferation, indicated by the proportion of cells in the G2M-phase dropping from 35% in untreated cells to 14.3% in treated cells. Clustering and t-SNE showed that cells within samples and between treated and untreated samples were affected differently. Enrichment analysis of differentially expressed genes showed that the treatments influence KEGG pathways and Gene Ontologies related to myeloid cell proliferation/differentiation, immune response, cancer, and the cell cycle. The present study shows the feasibility of using scRNA-seq and chemotherapy-treated HSPCs to find genes, pathways, and biological processes affected among and between treated and untreated cells. This indicates the possible gains of using single-cell toxicity studies for personalized medicine.
Collapse
|
13
|
Jiang S, Williams K, Kong X, Zeng W, Nguyen NV, Ma X, Tawil R, Yokomori K, Mortazavi A. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei. PLoS Genet 2020; 16:e1008754. [PMID: 32365093 PMCID: PMC7224571 DOI: 10.1371/journal.pgen.1008754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Katherine Williams
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Weihua Zeng
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail: (KY); (AM)
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- * E-mail: (KY); (AM)
| |
Collapse
|
14
|
Popovic M, Dhaenens L, Boel A, Menten B, Heindryckx B. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update 2020; 26:313-334. [DOI: 10.1093/humupd/dmz050] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract
BACKGROUND
Trophectoderm (TE) biopsy and next generation sequencing (NGS) are currently the preferred techniques for preimplantation genetic testing for aneuploidies (PGT-A). Although this approach delivered important improvements over previous testing strategies, increased sensitivity has also prompted a rise in diagnoses of uncertain clinical significance. This includes reports of chromosomal mosaicism, suggesting the presence of karyotypically distinct cells within a single TE biopsy. Given that PGT-A relies on the chromosomal constitution of the biopsied cells being representative of the entire embryo, the prevalence and clinical implications of blastocyst mosaicism continue to generate considerable controversy.
OBJECTIVE AND RATIONALE
The objective of this review was to evaluate existing scientific evidence regarding the prevalence and impact of chromosomal mosaicism in human blastocysts. We discuss insights from a biological, technical and clinical perspective to examine the implications of this diagnostic dilemma for PGT-A.
SEARCH METHODS
The PubMed and Google Scholar databases were used to search peer-reviewed publications using the following terms: ‘chromosomal mosaicism’, ‘human’, ‘embryo’, ‘blastocyst’, ‘implantation’, ‘next generation sequencing’ and ‘clinical management’ in combination with other keywords related to the subject area. Relevant articles in the English language, published until October 2019 were critically discussed.
OUTCOMES
Chromosomal mosaicism predominately results from errors in mitosis following fertilization. Although it appears to be less pervasive at later developmental stages, establishing the true prevalence of mosaicism in human blastocysts remains exceedingly challenging. In a clinical context, blastocyst mosaicism can only be reported based on a single TE biopsy and has been ascribed to 2–13% of embryos tested using NGS. Conversely, data from NGS studies disaggregating whole embryos suggests that mosaicism may be present in up to ~50% of blastocysts. However, differences in testing and reporting strategies, analysis platforms and the number of cells sampled inherently overshadow current data, while added uncertainties emanate from technical artefacts. Moreover, laboratory factors and aspects of in vitro culture generate further variability. Outcome data following the transfer of blastocysts diagnosed as mosaic remain limited. Current studies suggest that the transfer of putative mosaic embryos may lead to healthy live births, but also results in significantly reduced ongoing pregnancy rates compared to the transfer of euploid blastocysts. Observations that a subset of mosaic blastocysts has the capacity to develop normally have sparked discussions regarding the ability of embryos to self-correct. However, there is currently no direct evidence to support this assumption. Nevertheless, the exclusion of mosaic blastocysts results in fewer embryos available for transfer, which may inevitably compromise treatment outcomes.
WIDER IMPLICATIONS
Chromosomal mosaicism in human blastocysts remains a perpetual diagnostic and clinical dilemma in the context of PGT-A. This review offers an important scientific resource, informing about the challenges, risks and value of diagnosing mosaicism. Elucidating these uncertainties will ultimately pave the way towards improved clinical and patient management.
Collapse
Affiliation(s)
- Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lien Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Rich-Griffin C, Stechemesser A, Finch J, Lucas E, Ott S, Schäfer P. Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional Genomics. TRENDS IN PLANT SCIENCE 2020; 25:186-197. [PMID: 31780334 DOI: 10.1016/j.tplants.2019.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 05/19/2023]
Abstract
Plant function is the result of the concerted action of single cells in different tissues. Advances in RNA-seq technologies and tissue processing allow us now to capture transcriptional changes at single-cell resolution. The incredible potential of single-cell RNA-seq lies in the novel ability to study and exploit regulatory processes in complex tissues based on the behaviour of single cells. Importantly, the independence from reporter lines allows the analysis of any given tissue in any plant. While there are challenges associated with the handling and analysis of complex datasets, the opportunities are unique to generate knowledge of tissue functions in unprecedented detail and to facilitate the application of such information by mapping cellular functions and interactions in a plant cell atlas.
Collapse
Affiliation(s)
| | - Annika Stechemesser
- Warwick Mathematics Institute, The University of Warwick, Coventry CV4 7AL, UK
| | - Jessica Finch
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Emma Lucas
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Sascha Ott
- Department of Computer Science, The University of Warwick, Coventry CV4 7AL, UK.
| | - Patrick Schäfer
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK; Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
16
|
Paolillo C, Londin E, Fortina P. Single-Cell Genomics. Clin Chem 2019; 65:972-985. [PMID: 30872376 DOI: 10.1373/clinchem.2017.283895] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Single-cell genomics is an approach to investigate cell heterogeneity and to identify new molecular features correlated with clinical outcomes. This approach allows identification of the complexity of cell diversity in a sample without the loss of information that occurs when multicellular or bulk tissue samples are analyzed. CONTENT The first single-cell RNA-sequencing study was published in 2009, and since then many more studies and single-cell sequencing methods have been published. These studies have had a major impact on several fields, including microbiology, neurobiology, cancer, and developmental biology. Recently, improvements in reliability and the development of commercial single-cell isolation platforms are opening the potential of this technology to the clinical laboratory. SUMMARY In this review we provide an overview of the current state of single-cell genomics. We describe opportunities in clinical research and medical applications.
Collapse
Affiliation(s)
- Carmela Paolillo
- Division of Precision and Computational Diagnostics, Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; .,Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|