1
|
Suo A, Yang J, Mao C, Li W, Wu X, Xie W, Yang Z, Guo S, Zheng B, Zheng Y. Phased secondary small interfering RNAs in Camellia sinensis var. assamica. NAR Genom Bioinform 2023; 5:lqad103. [PMID: 38025046 PMCID: PMC10673657 DOI: 10.1093/nargab/lqad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Phased secondary small interfering RNAs (phasiRNAs) in plants play important roles in regulating genome stability, plant development and stress adaption. Camellia sinensis var. assamica has immense economic, medicinal and cultural significance. However, there are still no studies of phasiRNAs and their putative functions in this valuable plant. We identified 476 and 43 PHAS loci which generated 4290 twenty one nucleotide (nt) and 264 twenty four nt phasiRNAs, respectively. Moreover, the analysis of degradome revealed more than 35000 potential targets for these phasiRNAs. We identified several conserved 21 nt phasiRNA generation pathways in tea plant, including miR390 → TAS3, miR482/miR2118 → NB-LRR, miR393 → F-box, miR828 → MYB/TAS4, and miR7122 → PPR in this study. Furthermore, we found that some transposase and plant mobile domain genes could generate phasiRNAs. Our results show that phasiRNAs target genes in the same family in cis- or trans-manners, and different members of the same gene family may generate the same phasiRNAs. The phasiRNAs, generated by transposase and plant mobile domain genes, and their targets, suggest that phasiRNAs may be involved in the inhibition of transposable elements in tea plant. To summarize, these results provide a comprehensive view of phasiRNAs in Camellia sinensis var. assamica.
Collapse
Affiliation(s)
- Angbaji Suo
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, No. 249 North Jiaochang Road, 650223 Yunnan, China
| | - Chunyi Mao
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Wanran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Xingwang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Wenping Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Shiyong Guo
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, No. 220 Handan Road, 200433 Shanghai, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, No. 95 Jinhei Road, 650201 Yunnan, China
| |
Collapse
|
2
|
Da L, Li J, Zhao F, Liu H, Shi P, Shi S, Zhang X, Yang J, Zhang H. RoseAP: an analytical platform for gene function of Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2023; 14:1197119. [PMID: 37457357 PMCID: PMC10348015 DOI: 10.3389/fpls.2023.1197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Rosa rugosa, a perennial shrub belonging to family Rosaceae, is a well-known ornamental plant. Its petals contain an abundance of essential oils and anthocyanins with enormous economic and health benefits when used as edible or cosmetic ingredients. The whole genome of R. rugosa was sequenced in 2021, which provided opportunities and challenges for gene regulation. However, many gene functions remain unknown. Therefore, an analytical platform named RoseAP (http://www.gzybioinformatics.cn/RoseAP/index.php) for the functional analysis of R. rugosa genes was constructed. It improved the gene annotation rate by integrating and analyzing genomic and transcriptomic datasets. First, 38,815 genes, covering 97.76% of the coding genes, were annotated functionally and structurally using a variety of algorithms and rules. Second, a total of 33 transcriptome samples were integrated, including 23 samples from our lab and 10 samples from the SRA database. A co-expression network containing approximately 29,657 positive or negative gene pairs, covering 74.7% of the coding genes, was constructed based on PCC and MR algorithms. Network analysis revealed that the DFR function was closely related to anthocyanin metabolism. It demonstrated the reliability of the network. Several SAUR genes of R. rugosa shared similar expression patterns. RoseAP was used to determine the sequence, structure, functional annotation, expression profile, regulatory network, and functional modules at the transcriptional and protein levels by inputting gene IDs. In addition, auxiliary analytical tools, including BLAST, gene set enrichment, orthologue conversion, gene sequence extraction, gene expression value extraction, and JBrowse, were utilized. Regular updates to RoseAP are expected to facilitate mining of gene function and promote genetic improvement in R. rugosa.
Collapse
Affiliation(s)
- Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiande Li
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Fan Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Huilin Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Pengxia Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shaoming Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Xinxin Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
3
|
Jing X, Zhang H, Huai X, An Q, Qiao Y. Identification and characterization of miRNAs and PHAS loci related to the early development of the embryo and endosperm in Fragaria × ananassa. BMC Genomics 2022; 23:638. [PMID: 36076187 PMCID: PMC9454143 DOI: 10.1186/s12864-022-08864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The strawberry fleshy fruit is actually enlarged receptacle tissue, and the successful development of the embryo and endosperm is essential for receptacle fruit set. MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play indispensable regulatory roles in plant growth and development. However, miRNAs and phasiRNAs participating in the regulation of strawberry embryo and endosperm development have yet to be explored. RESULTS Here, we performed genome-wide identification of miRNA and phasiRNA-producing loci (PHAS) in strawberry seeds with a focus on those involved in the development of the early embryo and endosperm. We found that embryos and endosperm have different levels of small RNAs. After bioinformatics analysis, the results showed that a total of 404 miRNAs (352 known and 52 novel) and 156 PHAS genes (81 21-nt and 75 24-nt genes) could be found in strawberry seed-related tissues, of which four and nine conserved miRNA families displayed conserved expression in the endosperm and embryo, respectively. Based on refined putative annotation of PHAS loci, some auxin signal-related genes, such as CM3, TAR2, AFB2, ASA1, NAC and TAS3, were found, which demonstrates that IAA biosynthesis is important for endosperm and embryo development during early fruit growth. Additionally, some auxin signal-related conserved (miR390-TAS3) and novel (miR156-ASA1) trigger-PHAS pairs were identified. CONCLUSIONS Taken together, these results expand our understanding of sRNAs in strawberry embryo and endosperm development and provide a genomic resource for early-stage fruit development.
Collapse
Affiliation(s)
- Xiaotong Jing
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hong Zhang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xinjia Huai
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qi An
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
4
|
Pokhrel S, Huang K, Meyers BC. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1332-1345. [PMID: 34160111 DOI: 10.1111/tpj.15382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre-meiotic 21-nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non-canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a lineage-specific trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275-derived 24-nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24-nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24-nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.
Collapse
Affiliation(s)
- Suresh Pokhrel
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Kun Huang
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| |
Collapse
|
5
|
Pokhrel S, Huang K, Bélanger S, Zhan J, Caplan JL, Kramer EM, Meyers BC. Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nat Commun 2021; 12:4941. [PMID: 34400639 PMCID: PMC8368212 DOI: 10.1038/s41467-021-25128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.
Collapse
Affiliation(s)
- Suresh Pokhrel
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.134936.a0000 0001 2162 3504Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kun Huang
- grid.33489.350000 0001 0454 4791Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE USA
| | - Sébastien Bélanger
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA
| | - Junpeng Zhan
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.263817.9Department of Biology and Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Jeffrey L. Caplan
- grid.33489.350000 0001 0454 4791Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE USA
| | - Elena M. Kramer
- grid.38142.3c000000041936754XDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Blake C. Meyers
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.134936.a0000 0001 2162 3504Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
6
|
Suo A, Lan Z, Lu C, Zhao Z, Pu D, Wu X, Jiang B, Zhou N, Ding H, Zhou D, Liao P, Sunkar R, Zheng Y. Characterizing microRNAs and their targets in different organs of Camellia sinensis var. assamica. Genomics 2020; 113:159-170. [PMID: 33253793 DOI: 10.1016/j.ygeno.2020.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
To comprehensively annotate miRNAs and their targets in tea plant, Camellia sinensis, we sequenced small and messenger RNAs of 9 samples of Camellia sinensis var. assamica (YK-10), a diploid elite cultivar widely grown in southwest China. In order to identify targets of miRNAs, we sequenced two degradome sequencing profiles from leaves and roots of YK-10, respectively. By analyzing the small RNA-Seq profiles, we newly identified 137 conserved miRNAs and 23 species specific miRNAs in the genome of YK-10, which significantly improved the annotation of miRNAs in tea plant. Approximately 2000 differently expressed genes were identified when comparing RNA-Seq profiles of any two of the three organs selected in the study. Totally, more than 5000 targets of conserved miRNAs were identified in the two degradome profiles. Furthermore, our results suggest that a few miRNAs play roles in the biosynthesis pathways of theanine, caffeine and flavonoid. These results enhance our understanding of small RNA guided gene regulations in different organs of tea plant.
Collapse
Affiliation(s)
- Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zengquan Lan
- Eco-Development Institute, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Chenyu Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhigang Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dian Pu
- Eco-Development Institute, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Xingwang Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Bingbing Jiang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dongming Zhou
- Eco-Development Institute, Southwest Forestry University, Kunming, Yunnan 650224, China; Environmental and Health Research Center, Yunnan Medical Alliance Hospital Group, Kunming, Yunnan 650217, China
| | - Peiran Liao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
7
|
Yang C, Xiong X, Jiang X, Du H, Li Q, Liu H, Gan W, Yu C, Peng H, Xia B, Chen J, Song X, Yang L, Hu C, Qiu M, Zhang Z. Novel miRNA identification and comparative profiling of miRNA regulations revealed important pathways in Jinding duck ovaries by small RNA sequencing. 3 Biotech 2020; 10:38. [PMID: 31988832 DOI: 10.1007/s13205-019-2015-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Functional studies have revealed miRNAs play pivotal roles in ovulation and ovary development in mammalians, whereas little is known about the miRNA function in ducks. In this study, miRNA deep sequencing in the ovary tissues was carried out to obtain the miRNA profile from ovaries before oviposition (BO) and after oviposition (AO) in Jinding duck. Overall, an average of 23,128,075 and 26,020,523 reads were identified in the BO and AO samples, respectively, and 6739 miRNAs were identified from them through further mapping and analysis. Besides, 1570 miRNAs were identified as differentially expressed miRNAs compared with BO, including 493 miRNAs up-regulated and 1077 down-regulated in AO. Moreover, 2291 target genes were predicted from 443 significantly differentially expressed miRNAs. In addition, GO and KEGG pathway analysis indicated that target genes were enriched in some basic cell metabolism pathways as well as the productive pathways such as MAPK signaling pathway, gonadotropin-releasing hormone signaling pathway, TGF-beta signaling pathway which had been significantly changed. Our results helped to replenish the duck miRNA database and illustrate the potential mechanism of miRNA function in duck ovary development and reproduction process.
Collapse
Affiliation(s)
- Chaowu Yang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Xia Xiong
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Xiaosong Jiang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Huarui Du
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Qingyun Li
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Hehe Liu
- 3Sichuan Agricultural University, Sichuan, 611130 China
| | - Wu Gan
- Shanghai Ying Biotechnology Company, Shanghai, China
| | - Chunlin Yu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Han Peng
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Bo Xia
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Jialei Chen
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Xiaoyan Song
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Li Yang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Chenming Hu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Mohan Qiu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Zengrong Zhang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| |
Collapse
|
8
|
Ahmad S, Gromiha MM, Raghava GPS, Schönbach C, Ranganathan S. APBioNet's annual International Conference on Bioinformatics (InCoB) returns to India in 2018. BMC Genomics 2019; 19:266. [PMID: 30999857 PMCID: PMC7402400 DOI: 10.1186/s12864-019-5582-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
InCoB, one of the largest annual bioinformatics conferences in the Asia-Pacific region since its launch in 2002, returned to New Delhi, India after 12 years, with a conference attendance of 314 delegates. The 2018 conference had sessions on Big Data and Algorithms, Next Generation Sequencing and Omics Science, Structure, Function and Interactions, Disease and Drug Discovery and Plant and Agricultural Bioinformatics. The conference also featured an industry track as well as panel discussions on Women in Bioinformatics and Democratization vs. Quality control in academic publishing. Asia Pacific Bioinformatics Interaction & Networking Society (APbians) was launched as an APBionet Special Interest Group. Of the 52 oral presentations made, 22 were accepted in supplemental issues of BMC Bioinformatics, BMC Genomics or BMC Medical Genomics and are briefly reviewed here. Next year’s InCoB will be held in Jakarta, Indonesia from September 10–12, 2019.
Collapse
Affiliation(s)
- Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600 036, India
| | - Gajendra P S Raghava
- Centre for Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
| | - Christian Schönbach
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan.,International Research Center for Medical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Transformational Bioinformatics, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia.
| |
Collapse
|