1
|
Wang N, Jian W, Liang H, Zhang T, Qi P, Feng Y, Zhou X, Liu L, Yang S. Engineering a biomimicking strategy for discovering nonivamide-based quorum-sensing inhibitors for controlling bacterial infection. Eur J Med Chem 2024; 275:116609. [PMID: 38896993 DOI: 10.1016/j.ejmech.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The overuse of antibiotics over an extended period has led to increasing antibiotic resistance in pathogenic bacteria, culminating in what is now considered a global health crisis. To tackle the escalating disaster caused by multidrug-resistant pathogens, the development of new bactericides with new action mechanism is highly necessary. In this study, using a biomimicking strategy, a series of new nonivamide derivatives that feature an isopropanolamine moiety [the structurally similar to the diffusible signal factor (DSF) of Xanthomonas spp.] were prepared for serving as potential quorum-sensing inhibitors (QSIs). After screening and investigation of their rationalizing structure-activity relationships (SARs), compound A26 was discovered as the most optimal active molecule, with EC50 values of 9.91 and 7.04 μg mL-1 against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). A docking study showed that compound A26 exhibited robust interactions with Glu A: 161 of RpfF, which was strongly evidenced by fluorescence titration assay (KA value for Xoo RpfF-A26 = 104.8709 M-1). Furthermore, various bioassays showed that compound A26 could inhibit various bacterial virulence factors, including biofilm formation, extracellular polysaccharides (EPS), extracellular enzyme activity, DSF production, and swimming motility. In addition, in vivo anti-Xoo results showed that compound A26 had excellent control efficiency (curative activity: 43.55 %; protective activity: 42.56 %), surpassing that of bismerthiazol and thiodiazole copper by approximately 8.0%-37.3 %. Overall, our findings highlight a new paradigm wherein nonivamide derivatives exhibit potential in combating pathogen resistance issues by inhibiting bacterial quorum sensing systems though attributing to their new molecular skeleton, novel mechanisms of action, and non-toxic features.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Wujun Jian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Taihong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Puying Qi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yumei Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
4
|
Liu X, Ma Z, Tran TM, Rautengarten C, Cheng Y, Yang L, Ebert B, Persson S, Miao Y. Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity. PLANT PHYSIOLOGY 2023; 194:137-152. [PMID: 37647538 PMCID: PMC10756761 DOI: 10.1093/plphys/kiad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Carsten Rautengarten
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Staffan Persson
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
5
|
Bonfim IM, Paixão DA, Andrade MDO, Junior JM, Persinoti GF, de Giuseppe PO, Murakami MT. Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr 2023; 11:e0228023. [PMID: 37855631 PMCID: PMC10714752 DOI: 10.1128/spectrum.02280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri, a key virulence trait for many bacterial pathogens.
Collapse
Affiliation(s)
- Isabela Mendes Bonfim
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Douglas Alvarez Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Joaquim Martins Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| |
Collapse
|
6
|
Zhao Q, Liu F, Song C, Zhai T, He Z, Ma L, Zhao X, Jia Z, Song S. Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris ( Xcc) via JA signaling in Arabidopsis and Brassica oleracea. Front Cell Infect Microbiol 2023; 13:1203582. [PMID: 37404719 PMCID: PMC10315614 DOI: 10.3389/fcimb.2023.1203582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. Methods Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. Results We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. Conclusion These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.
Collapse
Affiliation(s)
- Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Fang Liu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Tingting Zhai
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Ziwei He
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Limei Ma
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Xuemeng Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| |
Collapse
|
7
|
Zhuang X, Liu Y, Fang N, Bai Z, Gao J. Quorum sensing improves the plant growth-promoting ability of Stenotrophomonas rhizophila under saline-alkaline stress by enhancing its environmental adaptability. Front Microbiol 2023; 14:1155081. [PMID: 37113227 PMCID: PMC10126360 DOI: 10.3389/fmicb.2023.1155081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Quorum sensing (QS) system has an essential function in plant growth-promoting rhizobacteria (PGPR) response to environmental stress and PGPR induction of plant tolerance to saline-alkaline stress. Nevertheless, there is a lack of understanding about how QS influences the growth-promoting effects of PGPR on plants. Stenotrophomonas rhizophila DSM14405T is a PGPR with a QS system, which can secrete diffusible signal factor (DSF), one of the QS signal molecules. In this study, we used the S. rhizophila wild type (WT) and an incompetent DSF production rpfF-knockout mutant strain to explore whether DSF-QS could affect the growth-promoting ability of PGPR in Brassica napus L. By measuring the seed germination rate, plant fresh weight, biomass, the total antioxidant capacity (T-AOC) level, and the content of chlorophyll in leaves, we found that DSF was unable to enhance the growth-promoting capacity of ΔrpfF and did not directly assist the plants in tolerating saline-alkaline stress. However, DSF aided S. rhizophila ΔrpfF in resisting stress during its effective period, and QS represents a continuous and precise regulatory mechanism. Altogether, our results show that DSF is helpful to improve the environmental adaptability and survival rate of S. rhizophila, thus indirectly improving the germination rate of seeds and helping plants grow under saline-alkaline stress. In this study, the mechanism of QS enhancing the environmental adaptability of PGPR was studied, which provided a theoretical basis for improving the application of PGPR to help plants better cope with saline-alkaline stress.
Collapse
Affiliation(s)
- Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Na Fang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xiong’an Institute of Innovation, Xiong’an New Area, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jie Gao,
| |
Collapse
|
8
|
He YW, Deng Y, Miao Y, Chatterjee S, Tran TM, Tian J, Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol 2023; 31:36-50. [PMID: 35941062 DOI: 10.1016/j.tim.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.
Collapse
Affiliation(s)
- Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinyue Deng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore
| | | | - Tuan Minh Tran
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jing Tian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Cardoso JLS, Souza AA, Vieira MLC. Molecular basis for host responses to Xanthomonas infection. PLANTA 2022; 256:84. [PMID: 36114308 DOI: 10.1007/s00425-022-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.
Collapse
Affiliation(s)
- Jéssica L S Cardoso
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeirópolis, SP, 13490-000, Brazil
| | - Maria Lucia C Vieira
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
10
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
11
|
Shi Y, Yang X, Ye X, Feng J, Cheng T, Zhou X, Liu DX, Xu L, Wang J. The Methyltransferase HemK Regulates the Virulence and Nutrient Utilization of the Phytopathogenic Bacterium Xanthomonas citri Subsp. citri. Int J Mol Sci 2022; 23:ijms23073931. [PMID: 35409293 PMCID: PMC8999716 DOI: 10.3390/ijms23073931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), seriously affects fruit quality and yield, leading to significant economic losses around the world. Understanding the mechanism of Xcc virulence is important for the effective control of Xcc infection. In this report, we investigate the role of a protein named HemK in the regulation of the virulence traits of Xcc. The hemK gene was deleted in the Xcc jx-6 background, and the ΔhemK mutant phenotypically displayed significantly decreased motility, biofilm formation, extracellular enzymes, and polysaccharides production, as well as increased sensitivity to oxidative stress and high temperatures. In accordance with the role of HemK in the regulation of a variety of virulence-associated phenotypes, the deletion of hemK resulted in reduced virulence on citrus plants as well as a compromised hypersensitive response on a non-host plant, Nicotiana benthamiana. These results indicated that HemK is required for the virulence of Xcc. To characterize the regulatory effect of hemK deletion on gene expression, RNA sequencing analysis was conducted using the wild-type Xcc jx-6 strain and its isogenic ΔhemK mutant strain, grown in XVM2 medium. Comparative transcriptome analysis of these two strains revealed that hemK deletion specifically changed the expression of several virulence-related genes associated with the bacterial secretion system, chemotaxis, and quorum sensing, and the expression of various genes related to nutrient utilization including amino acid metabolism, carbohydrate metabolism, and energy metabolism. In conclusion, our results indicate that HemK plays an essential role in virulence, the regulation of virulence factor synthesis, and the nutrient utilization of Xcc.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaobei Yang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaoxin Ye
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Jiaying Feng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| | - Junxia Wang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (X.Y.); (X.Y.); (J.F.); (T.C.); (X.Z.); (D.X.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (J.W.)
| |
Collapse
|
12
|
Luneau JS, Cerutti A, Roux B, Carrère S, Jardinaud M, Gaillac A, Gris C, Lauber E, Berthomé R, Arlat M, Boulanger A, Noël LD. Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptations at early infection stages. MOLECULAR PLANT PATHOLOGY 2022; 23:159-174. [PMID: 34837293 PMCID: PMC8743013 DOI: 10.1111/mpp.13117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/01/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Aude Cerutti
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Brice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
- Present address:
Brice Roux, HalioDx, Luminy Biotech EntreprisesMarseille Cedex 9France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | | | - Antoine Gaillac
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Richard Berthomé
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| |
Collapse
|
13
|
Pandey SS, Chatterjee S. Insights into the Cell-to-Cell Signaling and Iron Homeostasis in Xanthomonas Virulence and Lifestyle. PHYTOPATHOLOGY 2022; 112:209-218. [PMID: 34289715 DOI: 10.1094/phyto-11-20-0513-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Xanthomonas group of phytopathogens causes economically important diseases that lead to severe yield loss in major crops. Some Xanthomonas species are known to have an epiphytic and in planta lifestyle that is coordinated by several virulence-associated functions, cell-to-cell signaling (using diffusible signaling factor [DSF]), and environmental conditions, including iron availability. In this review, we described the role of cell-to-cell signaling by the DSF molecule and iron in the regulation of virulence-associated functions. Although DSF and iron are involved in the regulation of several virulence-associated functions, members of the Xanthomonas group of plant pathogens exhibit atypical patterns of regulation. Atypical patterns contribute to the adaptation to different lifestyles. Studies on DSF and iron biology indicate that virulence-associated functions can be regulated in completely contrasting fashions by the same signaling system in closely related xanthomonads.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | | |
Collapse
|
14
|
Singh P, Verma RK, Chatterjee S. The diffusible signal factor synthase, RpfF, in Xanthomonas oryzae pv. oryzae is required for the maintenance of membrane integrity and virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:118-132. [PMID: 34704368 PMCID: PMC8659556 DOI: 10.1111/mpp.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
The Xanthomonas group of phytopathogens communicate with a fatty acid-like cell-cell signalling molecule, cis-11-2-methyl-dodecenoic acid, also known as diffusible signal factor (DSF). In the pathogen of rice, Xanthomonas oryzae pv. oryzae, DSF is involved in the regulation of several virulence-associated functions, including production and secretion of several cell wall hydrolysing type II secretion effectors. To understand the role of DSF in the secretion of type II effectors, we characterized DSF synthase-deficient (rpfF) and DSF-deficient, type II secretion (xpsE) double mutants. Mutant analysis by expression analysis, secretion assay, fatty acid analysis, and physiological studies indicated that rpfF mutants exhibit hypersecretion of several type II effectors due to a perturbed membrane and DSF is required for maintaining membrane integrity. The rpfF mutants exhibited significantly higher uptake of 1-N-phenylnapthylamine and ethidium bromide, and up-regulation of rpoE (σE ). Increasing the osmolarity of the medium could rescue the hypersecretion phenotype of the rpfF mutant. The rpfF mutant exhibited highly reduced virulence. We report for the first time that in X. oryzae pv. oryzae RpfF is involved in the maintenance of membrane integrity by playing a regulatory role in the fatty acid synthesis pathway.
Collapse
Affiliation(s)
- Prashantee Singh
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
- Graduate StudiesManipal Academy of Higher EducationMangaluruIndia
| | - Raj Kumar Verma
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| | - Subhadeep Chatterjee
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| |
Collapse
|
15
|
Zhang Y, Andrade MO, Wang W, Teper D, Romeo T, Wang N. Examination of the Global Regulon of CsrA in Xanthomonas citri subsp. citri Using Quantitative Proteomics and Other Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1236-1249. [PMID: 34282945 DOI: 10.1094/mpmi-05-21-0113-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The RNA-binding protein CsrA is a global posttranscriptional regulator and controls many physiological processes and virulence traits. Deletion of csrA caused loss of virulence, reduced motility and production of xanthan gum and substantial increase in glycogen accumulation, as well as enhanced bacterial aggregation and cell adhesion in Xanthomonas spp. How CsrA controls these traits is poorly understood. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted to compare the protein profile of wild-type strain Xanthomonas citri subsp. citri and the isogenic ΔcsrA strain. A total of 2,374 proteins were identified, and 284 were considered to be differentially expressed proteins (DEPS), among which 151 proteins were up-regulated and 133 were down-regulated in the ΔcsrA strain with respect to the wild-type strain. Enrichment analysis and a protein-protein interaction network analysis showed that CsrA regulates bacterial secretion systems, flagella, and xanthan gum biosynthesis. Several proteins encoded by the gumB operon were down-regulated, whereas proteins associated with flagellum assembly and the type IV secretion system were up-regulated in the ΔcsrA strain relative to the Xcc306 strain. These results were confirmed by β-glucuronidase assay or Western blot. RNA secondary structure prediction and a gel-shift assay indicated that CsrA binds to the Shine-Dalgarno sequence of virB5. In addition, the iTRAQ analysis identified 248 DEPs that were not previously identified in transcriptome analyses. Among them, CsrA regulates levels of eight regulatory proteins (ColR, GacA, GlpR, KdgR, MoxR, PilH, RecX, and YgiX), seven TonB-dependent receptors, four outer membrane proteins, and two ferric enterobactin receptors. Taken together, this study greatly expands understanding of the regulatory network of CsrA in X. citri subsp. citri.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Maxuel O Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville FL 32611, U.S.A
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| | - Tony Romeo
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| |
Collapse
|
16
|
Nadarajah K, Abdul Rahman NSN. Plant-Microbe Interaction: Aboveground to Belowground, from the Good to the Bad. Int J Mol Sci 2021; 22:ijms221910388. [PMID: 34638728 PMCID: PMC8508622 DOI: 10.3390/ijms221910388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Soil health and fertility issues are constantly addressed in the agricultural industry. Through the continuous and prolonged use of chemical heavy agricultural systems, most agricultural lands have been impacted, resulting in plateaued or reduced productivity. As such, to invigorate the agricultural industry, we would have to resort to alternative practices that will restore soil health and fertility. Therefore, in recent decades, studies have been directed towards taking a Magellan voyage of the soil rhizosphere region, to identify the diversity, density, and microbial population structure of the soil, and predict possible ways to restore soil health. Microbes that inhabit this region possess niche functions, such as the stimulation or promotion of plant growth, disease suppression, management of toxicity, and the cycling and utilization of nutrients. Therefore, studies should be conducted to identify microbes or groups of organisms that have assigned niche functions. Based on the above, this article reviews the aboveground and below-ground microbiomes, their roles in plant immunity, physiological functions, and challenges and tools available in studying these organisms. The information collected over the years may contribute toward future applications, and in designing sustainable agriculture.
Collapse
|
17
|
Assis RDAB, Sagawa CHD, Zaini PA, Saxe HJ, Wilmarth PA, Phinney BS, Salemi M, Moreira LM, Dandekar AM. A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. Int J Mol Sci 2021; 22:10374. [PMID: 34638715 PMCID: PMC8508651 DOI: 10.3390/ijms221910374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.
Collapse
Affiliation(s)
- Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Houston J. Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| |
Collapse
|
18
|
Teper D, Xu J, Pandey SS, Wang N. PthAW1, a Transcription Activator-Like Effector of Xanthomonas citri subsp. citri, Promotes Host-Specific Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1033-1047. [PMID: 33970668 DOI: 10.1094/mpmi-01-21-0026-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus canker disease caused by Xanthomonas citri subsp. citri is one of the most destructive diseases in citrus. X. citri subsp. citri pathotypes display different host ranges. X. citri subsp. citri strain A (XccA) causes canker disease in most commercial citrus varieties, whereas strain AW (XccAW), which is genetically similar to XccA, infects only lime and alemow. Understanding the mechanism that determines the host range of pathogens is critical to investigating and utilizing host resistance. We hypothesized that XccAW would undergo mutations in genes that restrict its host range when artificially inoculated into incompatible citrus varieties. To test this hypothesis, we used an experimental evolution approach to identify phenotypic traits and genetic loci associated with the adaptation of XccAW to incompatible sweet orange. Repeated inoculation and reisolation cycles improved the ability of three independent XccAW strains to colonize sweet orange. Adapted XccAW strains displayed increased expression of type III secretion system and effector genes. Genome sequencing analysis indicated that two of the adapted strains harbored mutations in pthAW1, a transcription activator-like effector (TALE) gene, that corresponded to the removal of one or two repeats from the central DNA-binding repeat region. Introduction of the original but not the adapted pthAW1 variants into XccA abolished its ability to cause canker symptoms in sweet orange, Meyer lemon, and clementine but not in other XccAW-resistant citrus varieties. The original pthAW1, when expressed in XccA, induced ion leakage and the expression of pathogenesis-related genes but had no effect on CsLOB1 expression in sweet orange. Our study has identified a novel host-specific avirulence TALE and demonstrated active adaptive rearrangements of the TALE repeat array during host adaptation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
19
|
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. Shaping the leaf microbiota: plant-microbe-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:36-56. [PMID: 32910810 PMCID: PMC8210630 DOI: 10.1093/jxb/eraa417] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf's physical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes. These organisms can trigger plant basal defenses and benefit the host by priming for enhanced resistance to pathogens. In most disease resistance responses, microbial signals are recognized by extra- or intracellular receptors. The interactions tend to be species specific and it is unclear how they shape leaf microbial communities. In natural habitats, microbe-microbe interactions are also important for shaping leaf communities. To protect resources, plant colonizers have developed direct antagonistic or host manipulation strategies to fight competitors. Phyllosphere-colonizing microbes respond to abiotic and biotic fluctuations and are therefore an important resource for adaptive and protective traits. Understanding the complex regulatory host-microbe-microbe networks is needed to transfer current knowledge to biotechnological applications such as plant-protective probiotics.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| | - Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Priyamedha Sengupta
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
The HrpG/HrpX Regulon of Xanthomonads-An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9010187. [PMID: 33467109 PMCID: PMC7831014 DOI: 10.3390/microorganisms9010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.
Collapse
|
21
|
Joshi JB, Arul L, Ramalingam J, Uthandi S. Advances in the Xoo-rice pathosystem interaction and its exploitation in disease management. J Biosci 2020. [DOI: 10.1007/s12038-020-00085-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
23
|
Teper D, Zhang Y, Wang N. TfmR, a novel TetR-family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids. MOLECULAR PLANT PATHOLOGY 2019; 20:701-715. [PMID: 30919570 PMCID: PMC6637906 DOI: 10.1111/mpp.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The type III secretion system (T3SS) is required for Xanthomonas citri subsp. citri (Xcc) virulence by translocating effectors into host cytoplasm to promote disease development. The T3SS is controlled by the master transcriptional regulators HrpG and HrpX. While the function of HrpG and HrpX are well characterized, their upstream regulation remains elusive. By using transposon mutagenesis, we identified XAC3052, a TetR-family transcriptional regulator, which regulates T3SS gene expression. Deletion of XAC3052 caused significant reduction in the expression of T3SS and effector genes in vitro and in planta; as well as reduction of virulence in sweet orange (Citrus sinensis). Overexpression of hrpG restored the virulence of ∆XAC3052, suggesting that the loss of virulence is caused by reduction of T3SS gene expression. XAC3052 directly binds to the promoter region and represses the transcription of fadE, mhpC and fadH genes. FadE, MhpC and FadH are not involved in T3SS regulation, but involved in fatty acid catabolism. ∆XAC3052 displays altered fatty acid composition and retarded growth in environments limited in fatty acids. Exogenously supplemented long-chain fatty acids activate the fadE/mhpC promoter and suppress T3SS promoters in wild-type Xac but not in ∆XAC3052. Moreover, the binding of XAC3052 to its target promoter was disrupted by long-chain fatty acids in vitro. Herein, XAC3052 is designated as TfmR (T3SS and Fatty acid Mechanism Regulator). This study identifies a novel regulator of fatty acid metabolism and suggests that fatty acids play an important role in the metabolic control of virulence in Xcc.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research CenterGannan Normal UniversityGanzhou341000JiangxiChina
| |
Collapse
|
24
|
Liao ZX, Ni Z, Wei XL, Chen L, Li JY, Yu YH, Jiang W, Jiang BL, He YQ, Huang S. Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction. PLoS One 2019; 14:e0215039. [PMID: 30995267 PMCID: PMC6469767 DOI: 10.1371/journal.pone.0215039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
The Gram-negative bacterium Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of rice bacterial leaf streak (BLS), one of the most destructive diseases of rice (Oryza sativa L.) that is the important staple crop. Xoc can invade host leaves via stomata and wounds and its type three secretion system (T3SS) is pivotal to its pathogenic lifestyle. In this study, using a novel dual RNA-seq approach, we examined transcriptomes of rice and Xoc in samples inoculated with wild type Xoc GX01 and its T3SS defective strain (T3SD), to investigate the global transcriptional changes in both organisms. Compared with T3SD strain, rice inoculated with wild type Xoc GX01 resulted in significant expression changes of a series of plant defence related genes, including ones altered in plant signalling pathway, and downregulated in phenylalanine metabolism, flavonoid and momilactone biosynthesis, suggesting repression of plant defence response and reduction in both callose deposition and phytoalexin accumulation. Also, some known transcription activator-like effector (TALE) targets were induced by Xoc GX01, e.g. OsSultr3;6 which contributes to rice susceptibility. Some cell elongation related genes, including several expansin genes, were induced by GX01 too, suggesting that Xoc may exploit this pathway to weaken cell wall strength, beneficial for bacterial infection. On the other hand, compared with wild type, the T3SD strain transcriptome in planta was characterized by downregulation of ATP, protein and polysaccharide synthesis, and upregulation of antioxidation and detoxification related genes, revealing that T3SD strain faced serious starvation and oxidation stresses in planta without a functional T3SS. In addition, comparative global transcript profiles of Xoc in planta and in medium revealed an upregulation of virulence factor synthesis and secretion in planta in favour of bacterial infection. Collectively, this study provides a comprehensive representation of cross talk between the host and bacterial pathogen, revealing insights into the Xoc-rice pathogenic dynamic and reveals novel strategies exploited by this important pathogen to cause disease.
Collapse
Affiliation(s)
- Zhou-Xiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Zhe Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Xin-Li Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Long Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Jian-Yuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Yan-Hua Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Bo-Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
- * E-mail: (SH); (YQH)
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning Guangxi, China
- * E-mail: (SH); (YQH)
| |
Collapse
|