1
|
Schumaker B, Mortensen L, Klein RR, Mandal S, Dykes L, Gladman N, Rooney WL, Burson B, Klein PE. UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp. FRONTIERS IN PLANT SCIENCE 2024; 15:1451215. [PMID: 39435026 PMCID: PMC11491397 DOI: 10.3389/fpls.2024.1451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Black pericarp sorghum has notable value due to the biosynthesis of 3-deoxyanthocyanidins (3-DOAs), a rare class of bioactive polyphenols valued as antioxidant food additives and as bioactive compounds with cytotoxicity to human cancer cells. A metabolic and transcriptomic study was conducted to ascertain the cellular events leading to the activation of 3-DOA biosynthesis in black sorghum pericarp. Prolonged exposure of pericarp during grain maturation to high-fluence ultraviolet (UV) light resulted in elevated levels of reactive oxygen species (ROS) and the activation of 3-DOA biosynthesis in pericarp tissues. In conjunction with 3-DOA biosynthesis was the transcriptional activation of specific family members of early and late flavonoid biosynthesis pathway genes as well as the downstream activation of defense-related pathways. Promoter analysis of genes highly correlated with 3-DOA biosynthesis in black pericarp were enriched in MYB and HHO5/ARR-B motifs. Light microscopy studies of black pericarp tissues suggest that 3-DOAs are predominantly localized in the epicarp and are associated with the cell wall. A working model of UV-induced 3-DOA biosynthesis in black pericarp is proposed that shares features of plant immunity associated with pathogen attack or mechanical wounding. The present model depicts ROS accumulation, the transcriptional activation of receptor kinases and transcription factors (TFs) including NAC, WRKY, bHLH, AP2, and C2H2 Zinc finger domain. This study identified key biosynthetic and regulatory genes of 3-DOA accumulation in black pericarp and provided a deeper understanding of the gene networks and cellular events controlling this tissue-and genotype-specific trait.
Collapse
Affiliation(s)
- Brooklyn Schumaker
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Lauren Mortensen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Robert R. Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Unit, Fargo, ND, United States
| | - Nicholas Gladman
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Byron Burson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Wu H, Liu M, Fang Y, Yang J, Xie X, Zhang H, Zhou D, Zhou Y, He Y, Chen J, Bai Q. Genome-Wide Characterization of the INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Solanum lycopersicum and the Functional Analysis of SlIDD15 in Shoot Gravitropism. Int J Mol Sci 2024; 25:10422. [PMID: 39408748 PMCID: PMC11476865 DOI: 10.3390/ijms251910422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were identified in the tomato genome and classified into seven subgroups according to the evolutionary relationships of IDD proteins. Analysis of exon-intron structures and conserved motifs reflected the evolutionary conservation of SlIDDs in tomato. Collinearity analysis revealed that segmental duplication promoted the expansion of the SlIDD family. Ka/Ks analysis indicated that SlIDD gene orthologs experienced predominantly purifying selection throughout evolution. The analysis of cis-acting elements revealed that the promoters of SlIDD genes contain numerous elements associated with light, plant hormones, and abiotic stresses. The RNA-seq data and qRT-PCR experimental results showed that the SlIDD genes exhibited tissue-specific expression. Additionally, Group A members from Arabidopsis thaliana and rice are known to play a role in regulating plant shoot gravitropism. QRT-PCR analysis confirmed that the expression level of SlIDD15 in Group A was high in the hypocotyls and stems. Subcellular localization demonstrated that the SlIDD15 protein was localized in the nucleus. Surprisingly, the loss-of-function of SlIDD15 by CRISPR/Cas9 gene editing technology did not display obvious gravitropic response defects, implying the existence of functional redundant factors within SlIDD15. Taken together, this study offers foundational insights into the tomato IDD gene family and serves as a valuable guide for exploring their molecular mechanisms in greater detail.
Collapse
Affiliation(s)
- Huan Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yuqi Fang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jing Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Xiaoting Xie
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Dian Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yueqiong Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mellidou I, Koukounaras A, Frusciante S, Rambla JL, Patelou E, Ntoanidou S, Pons C, Kostas S, Nikoloudis K, Granell A, Diretto G, Kanellis AK. A metabolome and transcriptome survey to tap the dynamics of fruit prolonged shelf-life and improved quality within Greek tomato germplasm. FRONTIERS IN PLANT SCIENCE 2023; 14:1267340. [PMID: 37818313 PMCID: PMC10560995 DOI: 10.3389/fpls.2023.1267340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023]
Abstract
Introduction Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential. Discussion The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – DEMETER, Thessaloniki, Greece
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Koukounaras
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Rome, Italy
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Symela Ntoanidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Stefanos Kostas
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Rome, Italy
| | - Angelos K. Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
5
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Integrated Analysis of Widely Targeted Metabolomics and Transcriptomics Reveals the Effects of Transcription Factor NOR-like1 on Alkaloids, Phenolic Acids, and Flavonoids in Tomato at Different Ripening Stages. Metabolites 2022; 12:metabo12121296. [PMID: 36557334 PMCID: PMC9853326 DOI: 10.3390/metabo12121296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato is abundant in alkaloids, phenolic acids, and flavonoids; however, the effect of transcription factor NOR-like1 on these metabolites in tomato is unclear. We used a combination of widely targeted metabolomics and transcriptomics to analyze wild-type tomatoes and CR-NOR-like1 tomatoes. A total of 83 alkaloids, 85 phenolic acids, and 96 flavonoids were detected with significant changes. Combined with a KEGG enrichment analysis, we revealed 16 differentially expressed genes (DEGs) in alkaloid-related arginine and proline metabolism, 60 DEGs were identified in the phenolic acid-related phenylpropane biosynthesis, and 30 DEGs were identified in the flavonoid-related biosynthesis pathway. In addition, some highly correlated differential-expression genes with differential metabolites were further identified by correlation analysis. The present research provides a preliminary view of the effects of NOR-like1 transcription factor on alkaloid, phenolic acid, and flavonoid accumulation in tomatoes at different ripening stages based on widely targeted metabolomics and transcriptomics in plants, laying the foundation for extending fruit longevity and shelf life as well as cultivating stress-resistant plants.
Collapse
|
7
|
Koukounaras A, Mellidou I, Patelou E, Kostas S, Shukla V, Engineer C, Papaefthimiou D, Amari F, Chatzopoulos D, Mattoo AK, Kanellis AK. Over-expression of GGP1 and GPP genes enhances ascorbate content and nutritional quality of tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:124-138. [PMID: 36356544 DOI: 10.1016/j.plaphy.2022.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.
Collapse
Affiliation(s)
- Athanasios Koukounaras
- Department of Horticulture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, HAO ELGO-Demeter, 57001, Thessaloniki, Greece
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Stefanos Kostas
- Department of Horticulture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Vijaya Shukla
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Cawas Engineer
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; University of California San Diego, Division of Biological Sciences - Cell and Developmental Biology, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Laboratory of Botany, Department of Biological Sciences and Applications, University of Ioannina, Ioannina, Greece
| | - Foued Amari
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Wexner Medical Center/GEMMC, Comprehensive Cancer Center, 970 BRT, 460 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Dimitris Chatzopoulos
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
8
|
Do JH, Park SY, Park SH, Kim HM, Ma SH, Mai TD, Shim JS, Joung YH. Development of a Genome-Edited Tomato With High Ascorbate Content During Later Stage of Fruit Ripening Through Mutation of SlAPX4. FRONTIERS IN PLANT SCIENCE 2022; 13:836916. [PMID: 35498670 PMCID: PMC9039661 DOI: 10.3389/fpls.2022.836916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/12/2023]
Abstract
Ascorbate is an essential antioxidant substance for humans. Due to the lack of ascorbate biosynthetic enzyme, a human must intake ascorbate from the food source. Tomato is one of the most widely consumed fruits, thus elevation of ascorbate content in tomato fruits will improve their nutritional value. Here we characterized Solanum lycopersicum ASCORBATE PEROXIDASE 4 (SlAPX4) as a gene specifically induced during fruit ripening. In tomatoes, ascorbate accumulates in the yellow stage of fruits, then decreases during later stages of fruit ripening. To investigate whether SlAPX is involved in the decrease of ascorbate, the expression of SlAPXs was analyzed during fruit maturation. Among nine SlAPXs, SlAPX4 is the only gene whose expression was induced during fruit ripening. Mutation of SlAPX4 by the CRISPR/Cas9 system increased ascorbate content in ripened tomato fruits, while ascorbate content in leaves was not significantly changed by mutation of SlAPX4. Phenotype analysis revealed that mutation of SlAPX4 did not induce an adverse effect on the growth of tomato plants. Collectively, we suggest that SlAPX4 mediates a decrease of ascorbate content during the later stage of fruit ripening, and mutation of SlAPX4 can be used for the development of genome-edited tomatoes with elevated ascorbate content in fruits.
Collapse
|
9
|
Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. Regulation of Vitamin C Accumulation for Improved Tomato Fruit Quality and Alleviation of Abiotic Stress. Genes (Basel) 2021; 12:genes12050694. [PMID: 34066421 PMCID: PMC8148108 DOI: 10.3390/genes12050694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet. Therefore, the enhancement of AsA levels in tomato fruit attracts considerable attention, not only to improve its nutritional value but also to stimulate stress tolerance. Genetic regulation of AsA concentrations in plants can be achieved through the fine-tuning of biosynthetic, recycling, and transport mechanisms; it is also linked to changes in the whole fruit metabolism. Emerging evidence suggests that tomato synthesizes AsA mainly through the l-galactose pathway, but alternative pathways through d-galacturonate or myo-inositol, or seemingly unrelated transcription and regulatory factors, can be also relevant in certain developmental stages or in response to abiotic factors. Considering the recent advances in our understanding of AsA regulation in model and other non-model species, this review attempts to link the current consensus with novel technologies to provide a comprehensive strategy for AsA enhancement in tomatoes, without any detrimental effect on plant growth or fruit development.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hao Elgo-Demeter, 57001 Thessaloniki, Greece
- Correspondence: (I.M.); (A.K.K.)
| | - Athanasios Koukounaras
- Department of Horticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (S.K.)
| | - Stefanos Kostas
- Department of Horticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (S.K.)
| | - Efstathia Patelou
- Laboratory of Pharmacognosy, Group of Biotechnology of Pharmaceutical Plants, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angelos K. Kanellis
- Laboratory of Pharmacognosy, Group of Biotechnology of Pharmaceutical Plants, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (I.M.); (A.K.K.)
| |
Collapse
|
10
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
11
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
12
|
Genomic Dissection of a Wild Region in a Superior Solanum pennellii Introgression Sub-Line with High Ascorbic Acid Accumulation in Tomato Fruit. Genes (Basel) 2020; 11:genes11080847. [PMID: 32722275 PMCID: PMC7466095 DOI: 10.3390/genes11080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.
Collapse
|
13
|
Scarano A, Olivieri F, Gerardi C, Liso M, Chiesa M, Chieppa M, Frusciante L, Barone A, Santino A, Rigano MM. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2791-2799. [PMID: 32022274 PMCID: PMC7187367 DOI: 10.1002/jsfa.10312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Global warming and extreme or adverse events induced by climatic fluctuations are an important threat for plants growth and agricultural production. Adaptability to environmental changes prevalently derives from a large set of genetic traits affecting physiological and agronomic parameters. Therefore, the identification of genotypes that are good yield performer at high temperatures is becoming increasingly necessary for future breeding programs. Here, we analyzed the performances of different tomato landraces grown under elevated temperatures in terms of yield and nutritional quality of the fruit. Finally, we evaluated the antioxidant and anti-inflammatory activities of fruit extracts from the tomato landraces selected. RESULTS The tomato landraces analyzed here in a hot climate differed in terms of yield performance, physicochemical parameters of fruit (pH, titratable acidity, degrees Brix, firmness), bioactive compounds (ascorbic acid, carotenoids, and polyphenols), and anti-inflammatory potential. Three of these landraces (named E30, E94, and PDVIT) showed higher fruit quality and nutritional value. An estimated evaluation index allowed identification of PDVIT as the best performer in terms of yield and fruit quality under high temperatures. CONCLUSION The analyses performed here highlight the possibility to identify new landraces that can combine good yield performances and fruit nutritional quality at high temperatures, information that is useful for future breeding programs. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Aurelia Scarano
- ISPA–CNRInstitute of Science of Food Production, CNR Unit of LecceLecceItaly
| | - Fabrizio Olivieri
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Carmela Gerardi
- ISPA–CNRInstitute of Science of Food Production, CNR Unit of LecceLecceItaly
| | - Marina Liso
- National Institute of Gastroenterology ‘S. De Bellis’Institute of ResearchBariItaly
| | | | - Marcello Chieppa
- National Institute of Gastroenterology ‘S. De Bellis’Institute of ResearchBariItaly
- Department of Immunology and Cell BiologyEuropean Biomedical Research Institute of Salerno (EBRIS)SalernoItaly
| | - Luigi Frusciante
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Amalia Barone
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Angelo Santino
- ISPA–CNRInstitute of Science of Food Production, CNR Unit of LecceLecceItaly
| | | |
Collapse
|
14
|
Guo DL, Li Q, Ji XR, Wang ZG, Yu YH. Transcriptome profiling of 'Kyoho' grape at different stages of berry development following 5-azaC treatment. BMC Genomics 2019; 20:825. [PMID: 31703618 PMCID: PMC6839162 DOI: 10.1186/s12864-019-6204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023] Open
Abstract
Background 5-Azacytidine (5-azaC) promotes the development of ‘Kyoho’ grape berry but the associated changes in gene expression have not been reported. In this study, we performed transcriptome analysis of grape berry at five developmental stages after 5-azaC treatment to elucidate the gene expression networks controlling berry ripening. Results The expression patterns of most genes across the time series were similar between the 5-azaC treatment and control groups. The number of differentially expressed genes (DEGs) at a given developmental stage ranged from 9 (A3_C3) to 690 (A5_C5). The results indicated that 5-azaC treatment had not very great influences on the expressions of most genes. Functional annotation of the DEGs revealed that they were mainly related to fruit softening, photosynthesis, protein phosphorylation, and heat stress. Eight modules showed high correlation with specific developmental stages and hub genes such as PEROXIDASE 4, CAFFEIC ACID 3-O-METHYLTRANSFERASE 1, and HISTONE-LYSINE N-METHYLTRANSFERASE EZA1 were identified by weighted gene correlation network analysis. Conclusions 5-AzaC treatment alters the transcriptional profile of grape berry at different stages of development, which may involve changes in DNA methylation.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Xiao-Ru Ji
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|