1
|
Richards JK, Li J, Koladia V, Wyatt NA, Rehman S, Brueggeman RS, Friesen TL. A Moroccan Pyrenophora teres f. teres Population Defeats Rpt5, the Broadly Effective Resistance on Barley Chromosome 6H. PHYTOPATHOLOGY 2024; 114:193-199. [PMID: 37386751 DOI: 10.1094/phyto-04-23-0117-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroccan P. teres f. teres isolates that had overcome Rpt5 resistance and identified quantitative trait loci (QTL) that were effective against these isolates. Eight Moroccan P. teres f. teres isolates were phenotyped on barley lines CIho 5791 and Tifang. Six isolates were virulent on CIho 5791, and two were avirulent. A CIho 5791 × Tifang recombinant inbred line (RIL) population was phenotyped with all eight isolates and confirmed the defeat of the 6H resistance locus formerly mapped as Rpt5 in barley line CI9819. A major QTL on chromosome 3H with the resistance allele derived from Tifang, as well as minor QTL, was identified and provided resistance against these isolates. F2 segregation ratios supported dominant inheritance for both the 3H and 6H resistance. Furthermore, inoculation of progeny isolates derived from a cross of P. teres f. teres isolates 0-1 (virulent on Tifang/avirulent on CIho 5791) and MorSM 40-3 (avirulent on Tifang/virulent on CIho 5791) onto the RIL and F2 populations determined that recombination between isolates can generate novel genotypes that overcome both resistance genes. Markers linked to the QTL identified in this study can be used to incorporate both resistance loci into elite barley cultivars for durable resistance.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Vaidehi Koladia
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Nathan A Wyatt
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco 10010
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
3
|
Clare SJ, Duellman KM, Richards JK, Poudel RS, Merrick LF, Friesen TL, Brueggeman RS. Association mapping reveals a reciprocal virulence/avirulence locus within diverse US Pyrenophora teres f. maculata isolates. BMC Genomics 2022; 23:285. [PMID: 35397514 PMCID: PMC8994276 DOI: 10.1186/s12864-022-08529-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an economically important disease of barley that also infects wheat. Using genetic analysis to characterize loci in Ptm genomes associated with virulence or avirulence is an important step to identify pathogen effectors that determine compatible (virulent) or incompatible (avirulent) interactions with cereal hosts. Association mapping (AM) is a powerful tool for detecting virulence loci utilizing phenotyping and genotyping data generated for natural populations of plant pathogenic fungi.
Results
Restriction-site associated DNA genotyping-by-sequencing (RAD-GBS) was used to generate 4,836 single nucleotide polymorphism (SNP) markers for a natural population of 103 Ptm isolates collected from Idaho, Montana and North Dakota. Association mapping analyses were performed utilizing the genotyping and infection type data generated for each isolate when challenged on barley seedlings of thirty SFNB differential barley lines. A total of 39 marker trait associations (MTAs) were detected across the 20 barley lines corresponding to 30 quantitative trait loci (QTL); 26 novel QTL and four that were previously mapped in Ptm biparental populations. These results using diverse US isolates and barley lines showed numerous barley-Ptm genetic interactions with seven of the 30 Ptm virulence/avirulence loci falling on chromosome 3, suggesting that it is a reservoir of diverse virulence effectors. One of the loci exhibited reciprocal virulence/avirulence with one haplotype predominantly present in isolates collected from Idaho increasing virulence on barley line MXB468 and the alternative haplotype predominantly present in isolates collected from North Dakota and Montana increasing virulence on barley line CI9819.
Conclusions
Association mapping provided novel insight into the host pathogen genetic interactions occurring in the barley-Ptm pathosystem. The analysis suggests that chromosome 3 of Ptm serves as an effector reservoir in concordance with previous reports for Pyrenophora teres f. teres, the causal agent of the closely related disease net form net blotch. Additionally, these analyses identified the first reported case of a reciprocal pathogen virulence locus. However, further investigation of the pathosystem is required to determine if multiple genes or alleles of the same gene are responsible for this genetic phenomenon.
Collapse
|
4
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
5
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Adhikari A, Steffenson BJ, Smith KP, Smith M, Dill-Macky R. Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1019-1037. [PMID: 31900499 DOI: 10.1007/s00122-019-03528-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Association mapping study conducted in a population of 3490 elite barley breeding lines from ten barley breeding programs of the USA identified 12 QTLs for resistance/susceptibility to net form of net blotch. Breeding resistant varieties is the best management strategy for net form of net blotch (NFNB) in barley (Hordeum vulgare L.) caused by Pyrenophora teres f. teres (Ptt). Several resistance QTL have been previously identified in barley via linkage mapping and genome-wide association studies (GWAS). A GWAS conducted in a collection of advanced breeding lines (n = 3490) representing elite germplasm from ten barley breeding programs of the USA identified 42 unique marker-trait associations (MTA) for NFNB resistance. The lines were genotyped with 3072 SNP markers and phenotyped with four Ptt isolates in controlled environment. The lines were used to construct 13 different GWAS panels. Efficient mixed model association method with principal components and kinship was used for GWAS. Significance threshold for MTA was set at a false discovery rate of 0.05. Two, eight, six, one and 25 MTA were identified in chromosomes 1H, 3H, 4H, 5H and 6H, respectively. Based on genetic positions and linkage disequilibrium, these MTA's correspond to two, three, two, one and four QTLs in chromosome 1H, 3H, 4H, 5H and 6H, respectively. A comparison with previous linkage and GWAS studies revealed several previously identified and novel QTLs. Moreover, different genomic regions were found to be responsible for NFNB resistance in two-row versus six-row germplasm. The germplasm-specific SNP markers with additive effects and allelic distribution is reported to facilitate breeders in selection of markers for MAS to introgress novel net blotch resistance.
Collapse
Affiliation(s)
- Anil Adhikari
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Soil and Crop Science Department, Texas A&M University, College Station, TX, 77845, USA.
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Madeleine Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
7
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
8
|
Orlov YL, Galieva ER, Melerzanov AV. Computer genomics research at the bioinformatics conference series in Novosibirsk. BMC Genomics 2019; 20:537. [PMID: 31291908 PMCID: PMC6620193 DOI: 10.1186/s12864-019-5846-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yuriy L. Orlov
- Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Alexander V. Melerzanov
- Moscow Institute of Physics and Technology (MIPT), 141700, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
9
|
Orlov YL, Kochetov AV, Li G, Kolchanov NA. Genomics research at Bioinformatics of Genome Regulation and Structure\ Systems Biology (BGRS\SB) conferences in Novosibirsk. BMC Genomics 2019; 20:322. [PMID: 32039700 PMCID: PMC7227187 DOI: 10.1186/s12864-019-5707-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia. .,Novosibirsk State University, 630090, Novosibirsk, Russia. .,A.O.Kovalevsky Institute of Marine Biological Research of RAS, 119334, Moscow, Russia.
| | - Alex V Kochetov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | - Guoliang Li
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|