1
|
Lu T, Zhu L, Liang Y, Wang F, Cao A, Xie S, Chen X, Shen H, Wang B, Hu M, Li R, Jin X, Li H. Comparative Proteomic Analysis Reveals the Ascorbate Peroxidase-Mediated Plant Resistance to Verticillium dahliae in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 13:877146. [PMID: 35665163 PMCID: PMC9161280 DOI: 10.3389/fpls.2022.877146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In previous research on the resistance of cotton to Verticillium wilt (VW), Gossypium hirsutum and G. barbadense were usually used as the susceptible and resistant cotton species, despite their different genetic backgrounds. Herein, we present data independent acquisition (DIA)-based comparative proteomic analysis of two G. barbadense cultivars differing in VW tolerance, susceptible XH7 and resistant XH21. A total of 4,118 proteins were identified, and 885 of them were differentially abundant proteins (DAPs). Eight co-expressed modules were identified through weighted gene co-expression network analysis. GO enrichment analysis of the module that significantly correlated with V. dahliae infection time revealed that oxidoreductase and peroxidase were the most significantly enriched GO terms. The last-step rate-limiting enzyme for ascorbate acid (AsA) biosynthesis was further uncovered in the significantly enriched GO terms of the 184 XH21-specific DAPs. Additionally, the expression of ascorbate peroxidase (APX) members showed quick accumulation after inoculation. Compared to XH7, XH21 contained consistently higher AsA contents and rapidly increased levels of APX expression, suggesting their potential importance for the resistance to V. dahliae. Silencing GbAPX1/12 in both XH7 and XH 21 resulted in a dramatic reduction in VW resistance. Our data indicate that APX-mediated oxidoreductive metabolism is important for VW resistance in cotton.
Collapse
Affiliation(s)
- Tianxin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Yuxuan Liang
- Research Center for Wild Animal and Plant Resource Protection and Utilization, Qiongtai Normal University, Haikou, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Beini Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Man Hu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Research Center for Wild Animal and Plant Resource Protection and Utilization, Qiongtai Normal University, Haikou, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Fei J, Wang YS, Cheng H, Su YB. An efficient protein extraction method applied to mangrove plant Kandelia obovata leaves for proteomic analysis. PLANT METHODS 2021; 17:100. [PMID: 34587982 PMCID: PMC8482605 DOI: 10.1186/s13007-021-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mangroves plants, an important wetland system in the intertidal shores, play a vital role in estuarine ecosystems. However, there is a lack of a very effective method for extracting protein from mangrove plants for proteomic analysis. Here, we evaluated the efficiency of three different protein extraction methods for proteomic analysis of total proteins obtained from mangrove plant Kandelia obovata leaves. RESULTS The protein yield of the phenol-based (Phe-B) method (4.47 mg/g) was significantly higher than the yields of the traditional phenol (Phe) method (2.38 mg/g) and trichloroacetic acid-acetone (TCA-A) method (1.15 mg/g). The Phe-B method produced better two-dimensional electrophoresis (2-DE) protein patterns with high reproducibility regarding the number, abundance and coverage of protein spots. The 2-DE gels showed that 847, 650 and 213 unique protein spots were separated from the total K. obovata leaf proteins extracted by the Phe-B, Phe and TCA-A methods, respectively. Fourteen pairs of protein spots were randomly selected from 2-DE gels of Phe- and Phe-B- extracted proteins for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) technique, and the results of three pairs were consistent. Further, oxygen evolving enhancer protein and elongation factor Tu could be observed in the 2-DE gels of Phe and Phe-B methods, but could only be detected in the results of the Phe-B methods, showing that Phe-B method might be the optimized choice for proteomic analysis. CONCLUSION Our data provides an improved Phe-B method for protein extraction of K. obovata and other mangrove plant tissues which is rich in polysaccharides and polyphenols. This study might be expected to be used for proteomic analysis in other recalcitrant plants.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Bin Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
3
|
Jin D, Liu H, Bu L, Ke Q, Li Z, Han W, Zhu S, Liu C. Comparative Analysis of Whey Proteins in Human Milk Using a Data-Independent Acquisition Proteomics Approach during the Lactation Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4319-4330. [PMID: 33788563 DOI: 10.1021/acs.jafc.1c00186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human milk (HM) is the primary source of nutrients and bioactive components that supports the growth and development of infants. However, the proteins present in human milk may change depending on the period of lactation. In this light, the objective of the present study was to evaluate the effect of lactation period on HM utilizing a data-independent acquisition (DIA) approach to identify the differences in HM whey protein proteomes. As part of the study, whey proteins of January, February, and June in human milk were studied. The results identified a total of 1563 proteins in HM whey proteins of which 114 groups were subunits of differentially expressed proteins as revealed by cluster analysis. Protein expression was observed to be affected by the period of lactation with expression levels of plasminogen, thrombospondin-1, and tenascin higher during January, keratin, type I cytoskeletal 9 highest in February, and transcobalamin-1 highest in June. The results of this study contribute to expand our understanding of the human whey proteome but also provide strong evidence for the nutritional difference of HM during different lactation periods.
Collapse
Affiliation(s)
- Dengpeng Jin
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Bu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianhua Ke
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongyi Li
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenna Han
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Zhu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Liu
- The Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Vidović M, Franchin C, Morina F, Veljović-Jovanović S, Masi A, Arrigoni G. Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. Anal Bioanal Chem 2020; 412:8299-8312. [PMID: 33037906 DOI: 10.1007/s00216-020-02965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-β-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-β-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia.
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, Belgrade, 11042, Serbia.
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
- Proteomics Center University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padua, Italy
| | - Filis Morina
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Antonio Masi
- DAFNAE - University of Padova, Viale Università 16 - AGRIPOLIS, I-35020, Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy.
- Proteomics Center University of Padova and Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padua, Italy.
- CRIBI Biotechnology Center, University of Padova, viale G. Colombo 3, 35131, Padua, Italy.
| |
Collapse
|
5
|
Zhu Y, Yao J, Duan Y, Xu H, Cheng Q, Gao X, Li S, Yang F, Liu H, Yuan J. Protein Expression Profile in Rat Silicosis Model Reveals Upregulation of PTPN2 and Its Inhibitory Effect on Epithelial-Mesenchymal Transition by Dephosphorylation of STAT3. Int J Mol Sci 2020; 21:ijms21041189. [PMID: 32054021 PMCID: PMC7072761 DOI: 10.3390/ijms21041189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Silicosis is a chronic occupational lung disease caused by long-term inhalation of crystalline silica particulates. We created a rat model that closely approximates the exposure and development of silicosis in humans. Isobaric tags for relative and absolute quantitation (iTRAQ) technologies we used to identify proteins differentially expressed in activated rat lung tissue. We constructed three lentiviral knockdown vectors and an overexpression vector for the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene to achieve stable long-term expression. A total of 471 proteins were differentially expressed in the silicosis group compared with controls. Twenty upregulated, and eight downregulated proteins exhibited a ≥1.5-fold change relative to controls. We next found that the PTPN2, Factor B, and VRK1 concentrations in silicotic rats silicosis and SiO2-stimulated MLE-12 cells were significantly higher than control groups. More importantly, we found that overexpression of PTPN2 simultaneously decreased the expression of phospho–signal transducer and activator of transcription 3 (p-STAT3) and Vimentin, while increasing E-cadherin expression. The opposite pattern was observed for PTPN2-gene silencing. We identified three proteins with substantially enhanced expression in silicosis. Our study also showed that PTPN2 can inhibit epithelial-mesenchymal transition by dephosphorylating STAT3 in silicosis fibrosis.
Collapse
|
6
|
Zhu L, Zheng B, Song W, Tao C, Jin X, Li H. Comparative Proteomic Analysis of Molecular Differences between Leaves of Wild-Type Upland Cotton and Its Fuzzless- Lintless Mutant. Molecules 2019; 24:molecules24203769. [PMID: 31635060 PMCID: PMC6832260 DOI: 10.3390/molecules24203769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Fuzzless-lintless mutant (fl) ovules of upland cotton have been used to investigate cotton fiber development for decades. However, the molecular differences of green tissues between fl and wild-type (WT) cotton were barely reported. Here, we found that gossypol content, the most important secondary metabolite of cotton leaves, was higher in Gossypium hirsutum L. cv Xuzhou-142 (Xu142) WT than in fl. Then, we performed comparative proteomic analysis of the leaves from Xu142 WT and its fl. A total of 4506 proteins were identified, of which 103 and 164 appeared to be WT- and fl-specific, respectively. In the 4239 common-expressed proteins, 80 and 74 were preferentially accumulated in WT and fl, respectively. Pathway enrichment analysis and protein–protein interaction network analysis of both variety-specific and differential abundant proteins showed that secondary metabolism and chloroplast-related pathways were significantly enriched. Quantitative real-time PCR confirmed that the expression levels of 12 out of 16 selected genes from representative pathways were consistent with their protein accumulation patterns. Further analyses showed that the content of chlorophyll a in WT, but not chlorophyll b, was significantly increased compared to fl. This work provides the leaf proteome profiles of Xu142 and its fl mutant, indicating the necessity of further investigation of molecular differences between WT and fl leaves.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Bowen Zheng
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|