1
|
Pereira IS, da Cunha M, Leal IP, Luís MP, Gonçalves P, Gonçalves C, Mota LJ. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells. Med Microbiol Immunol 2024; 213:15. [PMID: 39008129 PMCID: PMC11249467 DOI: 10.1007/s00430-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.
Collapse
Affiliation(s)
- Inês Serrano Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria da Cunha
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Pacheco Leal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria Pequito Luís
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Paula Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Carla Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
2
|
Wu H, Juel MAI, Eytcheson S, Aw TG, Munir M, Molina M. Temporal and spatial relationships of CrAssphage and enteric viral and bacterial pathogens in wastewater in North Carolina. WATER RESEARCH 2023; 239:120008. [PMID: 37192571 PMCID: PMC10896230 DOI: 10.1016/j.watres.2023.120008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
Enteric disease remains one of the most common concerns for public health, particularly when it results from human exposure to surface and recreational waters contaminated with wastewater. Characterizing the temporal and spatial variation of enteric pathogens prevalent in wastewater is critical to develop approaches to mitigate their distribution in the environment. In this study, we aim to characterize pathogen variability and test the applicability of the human-associated wastewater indicator crAssphage as an indicator of enteric viral and bacterial pathogens. We conducted weekly samplings for 14 months from four wastewater treatment plants in North Carolina, USA. Untreated wastewater samples were processed using hollow fiber ultrafiltration, followed by secondary concentration methods. Adenovirus, norovirus, enterovirus, Salmonella, Shiga toxin 2 (stx2), Campylobacter, and crAssphage were measured by quantitative polymerase chain reaction (qPCR) and reverse transcriptase (rt)-qPCR. Our results revealed significant correlations between crAssphage and human adenovirus, enterovirus, norovirus, Salmonella, and Campylobacter (p<0.01). Pathogens and crAssphage concentrations in untreated wastewater showed distinct seasonal patterns, with peak concentrations of crAssphage and viral pathogens in fall and winter, while bacterial pathogens showed peaked concentrations in either winter (Campylobacter), fall (Salmonella), or summer (stx2). This study enhances the understanding of crAssphage as an alternative molecular indicator for both bacterial and viral pathogens. The findings of this study can also inform microbial modeling efforts for the prediction of the impact of wastewater pathogens on surface waters due to increased flooding events and wastewater overflows associated with climate change.
Collapse
Affiliation(s)
- Huiyun Wu
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA; Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA; Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Md Ariful Islam Juel
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Stephanie Eytcheson
- Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, Tennessee 37831 USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Marirosa Molina
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA.
| |
Collapse
|
3
|
Differential Expression of Two Copies of the irmA Gene in the Enteroaggregative E. coli Strain 042. Microbiol Spectr 2022; 10:e0045422. [PMID: 35766495 PMCID: PMC9431211 DOI: 10.1128/spectrum.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene duplications significantly impact the gene repertoires of both eukaryotic and prokaryotic microorganisms. The genomes of pathogenic Escherichia coli strains share a group of duplicated genes whose function is mostly unknown. The irmA gene is one of the duplicates encoded in several pathogenic E. coli strains. The function of its gene product was investigated in the uropathogenic E. coli strain CFT073, which contains a single functional copy. The IrmA protein structure mimics that of human interleukin receptors and likely plays a role during infection. The enteroaggregative E. coli strain 042 contains two functional copies of the irmA gene. In the present work, we investigated their biological roles. The irmA_4509 allele is expressed under several growth conditions. Its expression is modulated by the global regulators OxyR and Hha, with optimal expression at 37°C and under nutritional stress conditions. Expression of the irmA_2244 allele can only be detected when the irmA_4509 allele is knocked out. Differences in the promoter regions of both alleles account for their differential expression. Our results show that under several environmental conditions, the expression of the IrmA protein in strain 042 is dictated by the irmA_4509 allele. The irmA_2244 allele appears to play a backup role to ensure IrmA expression when the irmA_4509 allele loses its function. IMPORTANCE Gene duplications occur in prokaryotic genomes at a detectable frequency. In many instances, the biological function of the duplicates is unknown, and hence, the significance of the presence of multiple copies of these genes remains unclear. In pathogenic E. coli isolates, the irmA gene can be present either as a single copy or in two or more copies. We focused our work on studying why a different pathogenic E. coli strain encodes two functional copies of the irmA gene. We show that under several environmental conditions, one of the alleles dictates IrmA expression, and the second remains silent. The latter allele is only expressed when the former is silenced. The presence of more than one functional copy of the irmA gene in some pathogenic E. coli strains can result in sufficient expression of this virulence factor during the infection process.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Several types of Escherichia coli cause acute diarrhea in humans and are responsible for a large burden of disease globally. The purpose of this review is to summarize diarrheagenic Escherichia coli (DEC) pathotype definitions and discuss existing and emerging molecular, genomic, and gut microbiome methods to detect, define, and study DEC pathotypes. RECENT FINDINGS DEC pathotypes are currently diagnosed by molecular detection of unique virulence genes. However, some pathotypes have defied coherent molecular definitions because of imperfect gene targets, and pathotype categories are complicated by hybrid strains and isolation of pathotypes from asymptomatic individuals. Recent progress toward more efficient, sensitive, and multiplex DEC pathotype detection has been made using emerging PCR-based technologies. Genomics and gut microbiome detection methods continue to advance rapidly and are contributing to a better understanding of DEC pathotype diversity and functional potential. SUMMARY DEC pathotype categorizations and detection methods are useful but imperfect. The implementation of molecular and sequence-based methods and well designed epidemiological studies will continue to advance understanding of DEC pathotypes. Additional emphasis is needed on sequencing DEC genomes from regions of the world where they cause the most disease and from the pathotypes that cause the greatest burden of disease globally.
Collapse
|
5
|
Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, Ussery DW. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117. [PMID: 33500552 PMCID: PMC7838162 DOI: 10.1038/s42003-020-01626-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, more than one hundred thousand Escherichia coli and Shigella genomes were examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank revealed 14 distinct phylogroups. A representative genome or medoid identified for each phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/duplication. The methodology used in this work is able to reproduce known phylogroups, as well as to identify previously uncharacterized phylogroups in E. coli species.
Collapse
Affiliation(s)
- Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Carissa Bleker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, 55576, Zotzenheim, Germany
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
6
|
Sanchez-Herrero JF, Bernabeu M, Prieto A, Hüttener M, Juárez A. Gene Duplications in the Genomes of Staphylococci and Enterococci. Front Mol Biosci 2020; 7:160. [PMID: 32850954 PMCID: PMC7396535 DOI: 10.3389/fmolb.2020.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Gene duplications are a feature of bacterial genomes. In the present work we analyze the extent of gene duplications in the genomes of three microorganisms that belong to the Firmicutes phylum and that are etiologic agents of several nosocomial infections: Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis. In all three groups, there is an irregular distribution of duplications in the genomes of the strains analyzed. Whereas in some of the strains duplications are scarce, hundreds of duplications are present in others. In all three species, mobile DNA accounts for a large percentage of the duplicated genes: phage DNA in S. aureus, and plasmid DNA in the enterococci. Duplicates also include core genes. In all three species, a reduced group of genes is duplicated in all strains analyzed. Duplication of the deoC and rpmG genes is a hallmark of S. aureus genomes. Duplication of the gene encoding the PTS IIB subunit is detected in all enterococci genomes. In E. faecalis it is remarkable that the genomes of some strains encode duplicates of the prgB and prgU genes. They belong to the prgABCU cluster, which responds to the presence of the peptide pheromone cCF10 by expressing the surface adhesins PrgA, PrgB, and PrgC.
Collapse
Affiliation(s)
- José Francisco Sanchez-Herrero
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona, Spain.,High Content Genomics and Bioinformatics Unit, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
7
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|