1
|
Chen S, Zhou Q, Feng Y, Dong Y, Zhang Z, Wang Y, Liu W. Responsive mechanism of Hemerocallis citrina Baroni to complex saline-alkali stress revealed by photosynthetic characteristics and antioxidant regulation. PLANT CELL REPORTS 2024; 43:176. [PMID: 38896259 DOI: 10.1007/s00299-024-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Saline-alkali stress induces oxidative damage and photosynthesis inhibition in H. citrina, with a significant downregulation of the expression of photosynthesis- and antioxidant-related genes at high concentration. Soil salinization is a severe abiotic stress that impacts the growth and development of plants. In this study, Hemerocallis citrina Baroni was used to investigate its responsive mechanism to complex saline-alkali stress (NaCl:Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) for the first time. The growth phenotype, photoprotective mechanism, and antioxidant system of H. citrina were studied combining physiological and transcriptomic techniques. KEGG enrichment and GO analyses revealed significant enrichments of genes related to photosynthesis, chlorophyll degradation and antioxidant enzyme activities, respectively. Moreover, weighted gene co-expression network analysis (WGCNA) found that saline-alkali stress remarkably affected the photosynthetic characteristics and antioxidant system. A total of 29 key genes related to photosynthesis and 29 key genes related to antioxidant enzymes were discovered. High-concentration (250 mmol L-1) stress notably inhibited the expression levels of genes related to light-harvesting complex proteins, photosystem reaction center activity, electron transfer, chlorophyll synthesis, and Calvin cycle in H. citrina leaves. However, most of them were insignificantly changed under low-concentration (100 mmol L-1) stress. In addition, H. citrina leaves under saline-alkali stress exhibited yellow-brown necrotic spots, increased cell membrane permeability and accumulation of reactive oxygen species (ROS) as well as osmolytes. Under 100 mmol L-1 stress, ROS was eliminate by enhancing the activities of antioxidant enzymes. Nevertheless, 250 mmol L-1 stress down-regulated the expression levels of genes encoding antioxidant enzymes, and key enzymes in ascorbate-glutathione (AsA-GSH) cycle as well as thioredoxin-peroxiredoxin (Trx-Prx) pathway, thus inhibiting the activities of these enzymes. In conclusion, 250 mmol L-1 saline-alkali stress caused severe damage to H. citrina mainly by inhibiting photosynthesis and ROS scavenging capacity.
Collapse
Affiliation(s)
- Shuo Chen
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuxue Zhou
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yanjun Dong
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zixuan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Wang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
3
|
Wu Y, Li J, Yu L, Wang S, Lv Z, Long H, Zhai J, Lin S, Meng Y, Cao Z, Sun H. Overwintering performance of bamboo leaves, and establishment of mathematical model for the distribution and introduction prediction of bamboos. FRONTIERS IN PLANT SCIENCE 2023; 14:1255033. [PMID: 37746014 PMCID: PMC10515091 DOI: 10.3389/fpls.2023.1255033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Bamboo has great economic values and is used extensively in many industries, and their natural distribution range was divided into 12 zones in China according to the temperature of their geographical distribution in previous works. Different bamboo species had significantly different abilities in low-temperature tolerance, which need to be considered carefully during ex-situ introduction. In this paper, we observed and evaluated the low-temperature damage of 19 bamboo species in winter, and measured the physiological changes of bamboo leaves. A total of 3060 leaf samples were obtained from 102 core collections in 34 bamboo species from the 5 regions of Chinese mainland for anatomical comparison, in order to screen out the key anatomical indicators related to their low-temperature tolerance and to establish a mathematical prediction model for bamboo introduction. The results showed that the low-temperature resistance of clustered bamboos was generally lower than that of the scattered bamboos. The decreased temperature led to the constant decrease of net photosynthetic rate and transpiration rate, but the increase of soluble sugar content in all bamboo species. There was no dormancy for all bamboo species in winter. The temperate bamboos showed lower photosynthesis as compared to tropical bamboos in winter. The leaf shape of bamboos was closely related to their distribution. A total of 13 leaf indicators were screened and more suitable to estimate the low-temperature tolerant abilities of bamboos and to predict their distribution. The MNLR (multiple nonlinear regression) mathematical model showed the highest fitting degree and the optimal prediction ability in the potential northernmost introduction range of bamboos. This study lay a foundation for bamboo introduction, and could also reduce the economic losses caused by the wrong introduction.
Collapse
Affiliation(s)
- Yufang Wu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Jing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Lixia Yu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Shuguang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhuo Lv
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Hao Long
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Jingyu Zhai
- Horticulture Team, Beijing Zizhu Park, Beijing, China
| | - Shuyan Lin
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yong Meng
- Bamboo Research Institute, Hunan Academy of Forestry, Changsha, China
| | - Zhihua Cao
- Bamboo Research Institute, Anhui Academy of Forestry, Hefei, China
| | - Hui Sun
- Bamboo Research Institute, Anhui Academy of Forestry, Hefei, China
| |
Collapse
|
4
|
Liu Y, Fan W, Cheng Q, Zhang L, Cai T, Shi Q, Wang Z, Chang C, Yin Q, Jiang X, Jin K. Multi-omics analyses reveal new insights into nutritional quality changes of alfalfa leaves during the flowering period. FRONTIERS IN PLANT SCIENCE 2022; 13:995031. [PMID: 36531350 PMCID: PMC9748345 DOI: 10.3389/fpls.2022.995031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
High-quality alfalfa is an indispensable resource for animal husbandry and sustainable development. Its nutritional quality changes dramatically during its life cycle and, at present, no molecular mechanisms for nutrient metabolic variation in alfalfa leaves at different growth stages have been clearly reported. We have used correlation and network analyses of the alfalfa leaf metabolome, proteome, and transcriptome to explore chlorophyll, flavonoid, and amino acid content at two development stages: budding stage (BS) and full-bloom stage (FBS). A high correlation between the expression of biosynthetic genes and their metabolites revealed significant reductions in metabolite content as the plant matured from BS to FBS. l-Glutamate, the first molecule of chlorophyll biosynthesis, decreased, and the expression of HemA, which controls the transformation of glutamyl-tRNA to glutamate 1-semialdehyde, was down-regulated, leading to a reduction in leaf chlorophyll content. Flavonoids also decreased, driven at least in part by increased expression of the gene encoding CYP75B1: flavonoid 3'-monooxygenase, which catalyzes the hydroxylation of dihydroflavonols and flavonols, resulting in degradation of flavonoids. Expression of NITRILASE 2 (NIT2) and Methyltransferase B (metB), which regulate amino acid metabolism and influence the expression of genes of the glycolysis-TCA pathway, were down-regulated, causing amino acid content in alfalfa leaves to decrease at FBS. This study provides new insights into the complex regulatory network governing the content and decrease of chlorophyll, amino acids, flavonoids, and other nutrients in alfalfa leaves during maturation. These results further provide a theoretical basis for the generation of alfalfa varieties exhibiting higher nutritional quality, high-yield cultivation, and a timely harvest.
Collapse
Affiliation(s)
- Yinghao Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Wenqiang Fan
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lianyi Zhang
- Key Laboratory of Efficient Utilization of Forage, Inner Mongolia Agricultural and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Ting Cai
- Key Laboratory of Efficient Utilization of Forage, Inner Mongolia Agricultural and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Quan Shi
- Key Laboratory of Efficient Utilization of Forage, Inner Mongolia Agricultural and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Zuo Wang
- Key Laboratory of Efficient Utilization of Forage, Inner Mongolia Agricultural and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Chun Chang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Yin
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Xiaowei Jiang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ke Jin
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
5
|
Pereira JP, Garbin ML, Carrijo TT, da Silva JA, Bourguignon TP, Cavatte PC. Lack of coordination between stomatal and vein traits provides functional benefits to the dioecious tropical tree Myrsine coriacea. PHYSIOLOGIA PLANTARUM 2022; 174:e13719. [PMID: 35587454 DOI: 10.1111/ppl.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change will affect the distribution of many tropical plant species. However, the understanding of how dioecious tropical species cope with different environmental conditions is still limited. To address this issue, we investigated how secondary trait attributes in populations of the dioecious tropical tree Myrsine coriacea change along an altitudinal gradient. Eighty individual plants (40 male and 40 female) were selected among seven natural populations. Leaf variation in morphological and stomatal traits, and carbon and nitrogen isotopic compositions were analyzed. Female plants had greater isotopic leaf carbon composition (δ13 C) and nitrogen content than male plants, increasing their carboxylation capacity. Plants of both sexes had smaller stomata, greater water-use efficiency (greater δ13 C), and greater nitrogen isotopic composition (δ15 N) at higher altitudes. They also showed lower δ15 N and had greater carbon: nitrogen ratios at lower altitudes. There was a lack of coordination between stomatal and vein traits, which was compensated for by variation in specific leaf areas. This mechanism was essential for increasing plant performance under the limiting conditions found by the species at higher altitudes.
Collapse
Affiliation(s)
- Jéssica Priscilla Pereira
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Mário Luís Garbin
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Tatiana Tavares Carrijo
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Josimar Aleixo da Silva
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Cachoeiro de Itapemirim, Alegre, ES, Brazil
| | - Tayna Poppe Bourguignon
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Paulo Cezar Cavatte
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| |
Collapse
|
6
|
Integration of the Physiology, Transcriptome and Proteome Reveals the Molecular Mechanism of Drought Tolerance in Cupressus gigantea. FORESTS 2022. [DOI: 10.3390/f13030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Drought stress can dramatically impair woody plant growth and restrict the geographical distribution of many tree species. To better understand the dynamics between the response and mechanism of Cupressus gigantea to drought and post-drought recovery, a comparative analysis was performed, relying on physiological measurements, RNA sequencing (RNA-Seq) and two-dimensional gel electrophoresis (2-DE) proteins. In this study, the analyses revealed that photosynthesis was seriously inhibited, while osmolyte contents, antioxidant enzyme activity and non-enzymatic antioxidant contents were all increased under drought stress in seedlings. Re-watering led to a recovery in most of the parameters analyzed, mainly the photosynthetic parameters and osmolyte contents. Transcriptomic and proteomic profiling suggested that most of the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were specifically altered, and a few were consistently altered. Drought induced a common reduction in the level of DEGs and DEPs associated with photosynthesis. Notably, DEGs and DEPs involved in reactive oxygen species (ROS) scavenging, such as ascorbate oxidase and superoxide dismutase (SOD), showed an inverse pattern under desiccation. This study may improve our understanding of the underlying molecular mechanisms of drought resistance in C. gigantea and paves the way for more detailed molecular analysis of the candidate genes.
Collapse
|
7
|
Costa FV, Gadea A, Antunes AR, Ferron S, Back ÁJ, Barlow JW, Citadini-Zanette V, Dévéhat FLL, Amaral PDA. Chemical fingerprinting of the Brazilian medicinal plant Calea pinnatifida (R. Br.) Less. (Asteraceae) collected at different altitudes. Nat Prod Res 2022; 36:6069-6074. [PMID: 35227145 DOI: 10.1080/14786419.2022.2044809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calea pinnatifida (R. Br.) Less. is a plant of Brazilian folk medicine. We evaluated the influence of environmental factors on the chemical profile of C. pinnatifida collected during the winter season. C. pinnatifida leaves, alongside soil samples, were collected from two sites of different altitude. Plant samples were sequentially extracted, while soil samples were subject to compositional analysis. Plant extracts were compared using HPTLC-UV, using chemometric analyses to compare samplings harvested at both altitudes. Two marker metabolites, calein A (1) and acetylportentol (2), were isolated from samples collected at the respective altitudes. The differing metabolic profiles observed may be a result of the influence of environmental factors.
Collapse
Affiliation(s)
- Franciely Vanessa Costa
- Laboratório de Plantas Medicinais (LaPlaM/PPGCA), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Alice Gadea
- Université Rennes1, CNRS, ISCR - UMR 6226, Rennes, France
| | - Altamir Rocha Antunes
- Laboratório de Plantas Medicinais (LaPlaM/PPGCA), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Solenn Ferron
- Université Rennes1, CNRS, ISCR - UMR 6226, Rennes, France
| | - Álvaro José Back
- Laboratório de Plantas Medicinais (LaPlaM/PPGCA), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - James W Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vanilde Citadini-Zanette
- Laboratório de Plantas Medicinais (LaPlaM/PPGCA), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | | | - Patrícia de Aguiar Amaral
- Laboratório de Plantas Medicinais (LaPlaM/PPGCA), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
8
|
Liu Z, Fang Y, Wu C, Hai X, Xu B, Li Z, Song P, Wang H, Chao Z. The Difference of Volatile Compounds in Female and Male Buds of Herpetospermum pedunculosum Based on HS-SPME-GC-MS and Multivariate Statistical Analysis. Molecules 2022; 27:molecules27041288. [PMID: 35209076 PMCID: PMC8879731 DOI: 10.3390/molecules27041288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Herpetospermum pedunculosum (Ser.) C. B. Clarke (Family Cucurbitaceae) is a dioecious plant and has been used as a traditional Tibetan medicine for the treatment of hepatobiliary diseases. The component, content, and difference in volatile compounds in the female and male buds of H. pedunculosum were explored by using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology and multivariate statistical analysis. The results showed that isoamyl alcohol was the main compound in both female and male buds and its content in males was higher than that in females; 18 compounds were identified in female buds including 6 unique compounds such as (E)-4-hexenol and isoamyl acetate, and 32 compounds were identified in male buds, including 20 unique compounds such as (Z)-3-methylbutyraldehyde oxime and benzyl alcohol. (Z)-3-methylbutyraldehyde oxime and (E)-3-methylbutyraldehyde oxime were found in male buds, which only occurred in night-flowering plants. In total, 9 differential volatile compounds between female and male buds were screened out, including isoamyl alcohol, (Z)-3-methylbutanal oxime, and 1-nitropentane based on multivariate statistical analysis such as principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). This is the first time to report the volatile components of H. pedunculosum, which not only find characteristic difference between female and male buds, but also point out the correlation between volatile compounds, floral odor, and plant physiology. This study enriches the basic theory of dioecious plants and has guiding significance for the production and development of H. pedunculosum germplasm resources.
Collapse
Affiliation(s)
- Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Ye Fang
- Shangri-La Alpine Botanical Garden, Diqing 674400, China; (Y.F.); (X.H.)
| | - Cui Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Xian Hai
- Shangri-La Alpine Botanical Garden, Diqing 674400, China; (Y.F.); (X.H.)
| | - Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Zhuojun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Huijun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (C.W.); (B.X.); (Z.L.); (P.S.); (H.W.)
- Correspondence: or ; Tel.: +86-135-2270-5161
| |
Collapse
|
9
|
Du Z, Lin W, Yu B, Zhu J, Li J. Integrated Metabolomic and Transcriptomic Analysis of the Flavonoid Accumulation in the Leaves of Cyclocarya paliurus at Different Altitudes. FRONTIERS IN PLANT SCIENCE 2022; 12:794137. [PMID: 35211131 PMCID: PMC8860981 DOI: 10.3389/fpls.2021.794137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cyclocarya paliurus is a medicinal plant containing flavonoids, triterpenoids, polyphenolics, polysaccharides, and other compounds with diverse biological functions. C. paliurus is distributed across altitudes ranging from 400 to 1,000 m. However, little is known about the effect of altitude on metabolite accumulation in C. paliurus. Also, the biosynthetic pathway involved in flavonoid accumulation in C. paliurus has not been fully elucidated. In this study, mature leaves of C. paliurus growing at low altitude (280 m) and high altitude (920 m) were sampled and subjected to metabolomic and transcriptomic analyses. The flavonoid content and composition were higher in the leaves of C. paliurus collected at high altitude than in those collected at low altitude. Most of the differentially accumulated metabolites (DAMs) were enriched in "flavone and flavonol biosynthesis." The significant differentially expressed genes (DEGs) between low and high altitudes were mainly enriched in "biological process." The most heavily enriched KEGG pathway was related to the subcategory "Oxidative phosphorylation," indicating that complicated biological processes are involved in the response of C. paliurus to harsh environmental factors. High UV-light might be the main influencing factor among the harsh environmental factors found in high altitudes. Integrated analysis of metabolomic and transcriptomic data showed that 31 flavonoids were significantly correlated with 227 DEGs, resulting in 412 related pairs (283 positive and 129 negative) between the DEGs and flavonoids. The possible mechanisms underlying the differentially accumulation of flavonoids at different altitude might be due to variations in transport and relocation of flavonoids in C. paliurus leaves, but not different flavonoid biosynthesis pathways. The up-regulation of genes related to energy and protein synthesis might contribute to flavonoid accumulation at high altitudes. This study broadens our understanding of the effect of altitude on metabolite accumulation and biosynthesis in C. paliurus.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Weida Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Binbin Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jinxing Zhu
- Suichang County Bureau of Agriculture and Rural Affairs, Lishui, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
10
|
Wang X, Liu S, Zuo H, Zheng W, Zhang S, Huang Y, Pingcuo G, Ying H, Zhao F, Li Y, Liu J, Yi TS, Zan Y, Larkin RM, Deng X, Zeng X, Xu Q. Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. Curr Biol 2021; 31:3848-3860.e8. [PMID: 34314676 DOI: 10.1016/j.cub.2021.06.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Abstract
The Great Himalayan Mountains and their foothills are believed to be the place of origin and development of many plant species. The genetic basis of adaptation to high plateaus is a fascinating topic that is poorly understood at the population level. We comprehensively collected and sequenced 377 accessions of Prunus germplasm along altitude gradients ranging from 2,067 to 4,492 m in the Himalayas. We de novo assembled three high-quality genomes of Tibetan Prunus species. A comparative analysis of Prunus genomes indicated a remarkable expansion of the SINE retrotransposons occurred in the genomes of Tibetan species. We observed genetic differentiation between Tibetan peaches from high and low altitudes and that genes associated with light stress signaling, especially UV stress signaling, were enriched in the differentiated regions. By profiling the metabolomes of Tibetan peach fruit, we determined 379 metabolites had significant genetic correlations with altitudes and that in particular phenylpropanoids were positively correlated with altitudes. We identified 62 Tibetan peach-specific SINEs that colocalized with metabolites differentially accumualted in Tibetan relative to cultivated peach. We demonstrated that two SINEs were inserted in a locus controlling the accumulation of 3-O-feruloyl quinic acid. SINE1 was specific to Tibetan peach. SINE2 was predominant in high altitudes and associated with the accumulation of 3-O-feruloyl quinic acid. These genomic and metabolic data for Prunus populations native to the Himalayan region indicate that the expansion of SINE retrotransposons helped Tibetan Prunus species adapt to the harsh environment of the Himalayan plateau by promoting the accumulation of beneficial metabolites.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Shengjun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zuo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Weikang Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Zhang
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Gesang Pingcuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hong Ying
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Fan Zhao
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuanrong Li
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanjun Zan
- Department of Forestry Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90736, Sweden
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China; Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Horticultural Crop (Fruit trees) Biology and Genetic Improvement (Ministry of Agriculture and Rural Affairs), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene Loss, Pseudogenization in Plastomes of Genus Allium ( Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front Genet 2021; 12:674783. [PMID: 34306019 PMCID: PMC8296844 DOI: 10.3389/fgene.2021.674783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus—Allium—is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes’ annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the “normal” or “pseudo” state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.
Collapse
Affiliation(s)
- Victoria A Scobeyeva
- Department of Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim I Antipin
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei V Kuptsov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim S Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
| | - Maria D Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgenii A Konorov
- Laboratory of Animal Genetics, Vavilov Institute of General Genetics, Russian Academy of Science (RAS), Moscow, Russia
| | - Andrey E Samoilov
- Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| | - Anna S Speranskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| |
Collapse
|
12
|
Soil and Leaf Nutrients Drivers on the Chemical Composition of the Essential Oil of Siparuna muricata (Ruiz & Pav.) A. DC. from Ecuador. Molecules 2021; 26:molecules26102949. [PMID: 34063513 PMCID: PMC8155955 DOI: 10.3390/molecules26102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.
Collapse
|
13
|
Wu R, Lev-Yadun S, Sun L, Sun H, Song B. Higher Elevations Tend to Have Higher Proportion of Plant Species With Glandular Trichomes. FRONTIERS IN PLANT SCIENCE 2021; 12:632464. [PMID: 33912203 PMCID: PMC8075162 DOI: 10.3389/fpls.2021.632464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Glandular trichomes are well known to participate in plant chemical and physical defenses against herbivores, especially herbivorous insects. However, little is known about large-scale geographical patterns in glandular trichome occurrence. Herbivory pressure is thought to be higher at low elevations because of warmer and more stable climates. We therefore predicted a higher proportion of species with glandular trichomes at low elevations than at higher elevations. We compiled glandular trichome data (presence/absence) for 6,262 angiosperm species from the Hengduan Mountains (a global biodiversity hotspot in southwest China). We tested the elevational gradient (800-5,000 m a.s.l.) in the occurrence of plant species with glandular trichomes, and its correlations with biotic (occurrence of herbivorous insects) and abiotic factors, potentially shaping the elevational gradient in the occurrence of glandular trichomes. We found a significantly positive relationship between elevation and the occurrence of glandular trichomes, with the proportion of species having glandular trichomes increasing from 11.89% at 800 m a.s.l. to 17.92% at above 4,700 m. This cross-species relationship remained significant after accounting for phylogenetic relationships between species. Herbivorous insect richness peaked at mid-elevations and its association with the incidence of glandular trichomes was weak. Mean annual temperature was the most important factor associated negatively with glandular trichomes. Our results do not support the hypothesis that plant defenses decrease with increasing elevation. In contrast, a higher proportion of plant species with glandular trichome toward higher elevations is observed. Our results also highlight the importance of considering the simultaneous influences of biotic and abiotic factors in testing geographical variation in multifunctional plant defenses.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Kiryat Tiv’on, Israel
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Morgan K, Harr B, White MA, Payseur BA, Turner LM. Disrupted Gene Networks in Subfertile Hybrid House Mice. Mol Biol Evol 2021; 37:1547-1562. [PMID: 32076722 PMCID: PMC7253214 DOI: 10.1093/molbev/msaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Dobzhansky–Muller (DM) model provides a widely accepted mechanism for the evolution of reproductive isolation: incompatible substitutions disrupt interactions between genes. To date, few candidate incompatibility genes have been identified, leaving the genes driving speciation mostly uncharacterized. The importance of interactions in the DM model suggests that gene coexpression networks provide a powerful framework to understand disrupted pathways associated with postzygotic isolation. Here, we perform weighted gene coexpression network analysis to infer gene interactions in hybrids of two recently diverged European house mouse subspecies, Mus mus domesticus and M. m. musculus, which commonly show hybrid male sterility or subfertility. We use genome-wide testis expression data from 467 hybrid mice from two mapping populations: F2s from a laboratory cross between wild-derived pure subspecies strains and offspring of natural hybrids captured in the Central Europe hybrid zone. This large data set enabled us to build a robust consensus network using hybrid males with fertile phenotypes. We identify several expression modules, or groups of coexpressed genes, that are disrupted in subfertile hybrids, including modules functionally enriched for spermatogenesis, cilium and sperm flagellum organization, chromosome organization, and DNA repair, and including genes expressed in spermatogonia, spermatocytes, and spermatids. Our network-based approach enabled us to hone in on specific hub genes likely to be influencing module-wide gene expression and hence potentially driving large-effect DM incompatibilities. A disproportionate number of hub genes lie within sterility loci identified previously in the hybrid zone mapping population and represent promising candidate barrier genes and targets for future functional analysis.
Collapse
Affiliation(s)
- Katy Morgan
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Bettina Harr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
15
|
Kumari M, Joshi R, Kumar R. Metabolic signatures provide novel insights to Picrorhiza kurroa adaptation along the altitude in Himalayan region. Metabolomics 2020; 16:77. [PMID: 32577832 DOI: 10.1007/s11306-020-01698-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Along the altitude, environmental conditions vary significantly that might influence plant performance and distribution. Adaptation to these changing conditions is a complex biological process that involves reprogramming of genes, proteins and metabolites. The metabolic response of medicinal plants along the altitude has been less explored yet. OBJECTIVES In the present study, we investigated the adaptation strategies of Picrorhiza kurroa Royle ex Benth. along the altitude in organ specific manner using metabolomic approach. METHODS Picrorhiza kurroa plants at flowering stage were randomly sampled from three altitudes viz. 3400, 3800 and 4100 masl in the Himalayan region. Leaf, root and rhizome were used for LC-MS based non-targeted metabolite profiling and targeted analysis of sugars, amino acids, picrosides and their corresponding phenolic acids. RESULTS A total of 220, primary and secondary metabolites (SMs) were identified (p < 0.05) representing an extensive inventory of metabolites and their spatial distribution in P. kurroa. Differential accumulation of metabolites suggests source-sink carbon partitioning, occurrence of partial TCA cycle, ascorbate metabolism, purine catabolism and salvage route, pyrimidine synthesis, lipid alteration besides gibberellins and cytokinin inhibition might be an adaptive strategy to alpine environmental stress along the altitude. Further, marked differences of organ and altitude specific SMs reflect alteration in secondary metabolic pathways. Significant accumulation of picrosides suggests their probable role in P. kurroa adaptation. CONCLUSION This study provides a platform that would be useful in deciphering the role of metabolites considered to be involved in plant adaptation.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India.
| |
Collapse
|
16
|
Huihui Z, Xin L, Yupeng G, Mabo L, Yue W, Meijun A, Yuehui Z, Guanjun L, Nan X, Guangyu S. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO 3 stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110259. [PMID: 32097787 DOI: 10.1016/j.ecoenv.2020.110259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
In this paper, the effects of 100 mM NaCl and NaHCO3 stress on reactive oxygen species (ROS) and physiological and proteomic aspects of ROS metabolism in mulberry seedling leaves were studied. The results showed that NaCl stress had little effect on photosynthesis and respiration of mulberry seedling leaves. Superoxide dismutase (SOD) activity and the expression of related proteins in leaves increased by varying degrees, and accumulation of superoxide anion (O2·-) not observed. Under NaHCO3 stress, photosynthesis and respiration were significantly inhibited, while the rate of O2·- production rate and H2O2 content increased. The activity of catalase (CAT) and the expression of CAT (W9RJ43) increased under NaCl stress. In response to NaHCO3 stress, the activity and expression of CAT were significantly decreased, but the ability of H2O2 scavenging of peroxidase (POD) was enhanced. The ascorbic acid-glutathione (AsA-GSH) cycle in mulberry seedling leaves was enhancement in both NaCl and NaHCO3 stress. The expression of 2-Cys peroxiredoxin BAS1 (2-Cys Prx BAS1), together with thioredoxin F (TrxF), thioredoxin O1 (TrxO1), thioredoxin-like protein CITRX (Trx CITRX), and thioredoxin-like protein CDSP32 (Trx CDSP32) were significantly increased under NaCl stress. Under NaHCO3 stress, the expression of the electron donor of ferredoxin-thioredoxin reductase (FTR), together with Trx-related proteins, such as thioredoxin M (TrxM), thioredoxin M4 (TrxM4), thioredoxin X (TrxX), TrxF, and Trx CSDP32 were significantly decreased, suggesting that the thioredoxin-peroxiredoxin (Trx-Prx) pathway's function of scavenging H2O2 of in mulberry seedling leaves was inhibited. Taken together, under NaCl stress, excessive production of O2·- mulberry seedlings leaves was inhibited, and H2O2 was effectively scavenged by CAT, AsA-GSH cycle and Trx-Prx pathway. Under NaHCO3 stress, despite the enhanced functions of POD and AsA-GSH cycle, the scavenging of O2·- by SOD was not effective, and that of H2O2 by CAT and Trx-Prx pathway were inhibited; and in turn, the oxidative damage to mulberry seedling leaves could not be reduced.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guan Yupeng
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Mabo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Liu Guanjun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
17
|
Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:979-1000. [PMID: 31953876 DOI: 10.1111/tpj.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Carlos M Figueroa
- UNL, CONICET, FBCB, Instituto de Agrobiotecnología del Litoral, 3000, Santa Fe, Argentina
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| |
Collapse
|
18
|
Wang C, Wang X, Tseringand T, Song Y, Zhu R. The plastid genome of Herpetospermum pedunculosum (Cucurbitaceae), an endangered traditional Tibetan medicinal herbs. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:495-497. [PMID: 33366618 PMCID: PMC7748728 DOI: 10.1080/23802359.2019.1703603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Herpetospermum pedunculosum (Ser.) C. B. Clarke is an important traditional Tibetan medicinal plants in the genus of Herpetospermum, Cucurbitaceae. To better determine its phylogenetic location with respect to the other Cucurbitaceae species, the complete plastome of H. pedunculosum will be reported, which is the first species with plastid genome sequence in the genus of Herpetospermum. Its whole genome is 156,531 bp in length, consisting of a pair of inverted repeats (IRs) of 26,147 bp, one large single-copy (LSC) region of 85,878 bp, and one small single-copy (SSC) region of 18,359 bp. There are 128 genes, including 83 protein-coding genes, 36 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes in the plastome. Phylogenetic analysis based on 13 complete plastomes of Cucurbitaceae species showed sisterhood of H. pedunculosum and a clade containing Trichosanthes kirilowii and Hodgsonia macrocarpa, suggesting the close relationship between tribe Schizopeponeae and tribe Sicyoeae in the family Cucurbitaceae.
Collapse
Affiliation(s)
- Chengwang Wang
- School of Life Science, Nanchang University, Jiangxi, China
| | - Xilong Wang
- Tibet Plateau Institute of Biology, Xizang, China
| | - Tamdrin Tseringand
- The Technological Developmnet Exchange Service Center of Linzhi, Xizang, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Rongjie Zhu
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang, China
| |
Collapse
|