1
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
2
|
Zhang T, Niu Z, He J, Pu P, Meng F, Xi L, Tang X, Ding L, Ma M, Chen Q. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Curr Issues Mol Biol 2023; 45:2937-2949. [PMID: 37185716 PMCID: PMC10136961 DOI: 10.3390/cimb45040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Fei Meng
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Department of Animal Science, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Odetti LM, González ECL, Siroski PA, Simoniello MF, Poletta GL. How the exposure to environmentally relevant pesticide formulations affects the expression of stress response genes and its relation to oxidative damage and genotoxicity in Caiman latirostris. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104014. [PMID: 36375727 DOI: 10.1016/j.etap.2022.104014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to analyze the molecular stress responses thought the expression levels of catalase (cat), superoxide dismutase (sod) and heat shock protein 70 (hsp70) genes, and how these relate with cellular stress response considering oxidative damage to lipids, DNA and genotoxicity in blood of Caiman latirostris hatchlings exposed to pesticide formulations under ex situ conditions. Treatments were: negative control (NC-tap water), glyphosate 2% (GLY), cypermethrin 0.12% (CYP), chlorpyrifos 0.8% (CPF), and their ternary mixture (Mx3). The concentrations and schedule of application were those recommended in soybean crops. Soil and water showed pesticides residues in all exposed groups. Results showed a statistically significant increase in the micronucleus frequency and DNA damage, with an important oxidation in all exposed groups. The expression level of cat gene was significantly higher in CYP while the expression of hsp70 was significantly lower in GLY, CYP and Mx3, compared to NC. Pesticides tested showed alterations in expression levels, growth parameters, DNA damage and base oxidation under realistic exposure conditions, and can threaten, in the long term, the health status of wild populations.
Collapse
Affiliation(s)
- Lucia M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina.
| | - Evelyn C López González
- Lab. de Ecología Molecular Aplicada (LEMA) - Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL, CONICET), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Pablo A Siroski
- Lab. de Ecología Molecular Aplicada (LEMA) - Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL, CONICET), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Ma Fernanda Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - Gisela L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| |
Collapse
|
4
|
Komaki S, Matsunami M, Lin JW, Lee KH, Lin YP, Lee Y, Lin SM, Igawa T. Transcriptomic Changes in Hot Spring Frog Tadpoles (Buergeria otai) in Response to Heat Stress. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.706887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Buergeria frog tadpoles exhibit high thermal tolerance and are occasionally found in water pools that temporarily exceed 40°C. With the aim of understanding how they can cope with the severe heat stress, we performed RNA-seq of three heat-treated (38°C) and three control (25°C) tadpoles and compared their transcriptomic profiles. We identified 382 differentially expressed transcripts. A protein-protein interaction (PPI) network analysis of these transcripts further identified hub proteins involved in protein degradation, stress granule assembly, and global suppression of DNA transcription and mRNA translation. Along with the avoidance behavior against high water temperature, these endurance mechanisms potentially support tadpoles to survive in high temperatures for short periods of time. Similar mechanisms may exist in many other amphibian species whose habitats are prone to high temperatures.
Collapse
|
5
|
Herrboldt MA, Steffen MA, McGouran CN, Bonett RM. Pheromone Gene Diversification and the Evolution of Courtship Glands in Plethodontid Salamanders. J Mol Evol 2021; 89:576-587. [PMID: 34392385 DOI: 10.1007/s00239-021-10026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Proteinaceous pheromones that diversify through gene duplication can result in shifts in courtship cocktails that may serve as a mechanism for reproductive isolation. The molecular evolution of pheromones has been extensively studied in salamanders, but how these genes and associated novel courtship glands have codiversified has not been evaluated. In this study we used transcriptional analyses to examine the relationship between pheromone diversification and gland type in three divergent lineages of plethodontid salamanders. Our results revealed that plethodontid salamanders express up to eight divergent Sodefrin Precursor-like Factor genes (spf, representing both alpha and beta subfamilies) along with Plethodontid Modulating Factor (pmf) and Plethodontid Receptivity Factor (prf). Expression of pheromone genes is tissue specific with pmf, prf, and some spf genes restricted to the mental gland. In contrast, the caudal gland shows strong expression of the other spf genes. We found evidence for punctuated changes in pheromone cocktail composition related to the loss of metamorphosis, and subsequent extreme reduction of the mental gland, in a paedomorphic lineage. Our study provides insight into how pheromone diversification can be partitioned into unique glands, which may lead to cocktail specificity in behavioral modules during courtship.
Collapse
Affiliation(s)
- Madison A Herrboldt
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.
| | - Michael A Steffen
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Carissa N McGouran
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| |
Collapse
|
6
|
Bohenek JR, Leary CJ, Resetarits WJ. Exposure to glucocorticoids alters life history strategies in a facultatively paedomorphic salamander. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:329-338. [PMID: 33465297 DOI: 10.1002/jez.2445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Polyphenisms, where two or more alternative, environmentally-cued phenotypes are produced from the same genotype, arise through variability in the developmental rate and timing of phenotypic traits. Many of these developmental processes are controlled or influenced by endogenous hormones, such as glucocorticoids, which are known to regulate a wide array of vertebrate ontogenetic transitions. Using the mole salamander, Ambystoma talpoideum, as a model, we investigated the role of glucocorticoids in regulating facultative paedomorphosis, an ontogenetic polyphenism where individuals may delay metamorphosis into terrestrial adults. Instead, individuals reproduce as aquatic paedomorphic adults. Paedomorphosis often occurs when aquatic conditions remain favorable, while metamorphosis typically occurs in response to deteriorating or "stressful" aquatic conditions. Since glucocorticoids are central to the vertebrate stress response and are known to play a central role in regulating obligate metamorphosis in amphibians, we hypothesized that they are key regulators of paedomorphic life history strategies. To test this hypothesis, we compared development of larvae in outdoor mesocosms exposed to Low, Medium, and High exogenous doses of corticosterone (CORT). Results revealed that body size and the proportion of paedomorphs were both inversely proportional to exogenous CORT doses and whole-body CORT content. Consistent with known effects of CORT on obligate metamorphosis in amphibians, our results link glucocorticoids to ontogenetic transitions in facultatively paedomorphic salamanders. We discuss our results in the context of theoretical models and the suite of environmental cues known to influence facultative paedomorphosis.
Collapse
Affiliation(s)
- Jason R Bohenek
- Department of Biology, The University of Mississippi University, MS, United States of America.,Centers for Water and Wetland Resources, and Biodiversity and Conservation Research, The University of Mississippi University, MS, United States of America
| | - Christopher J Leary
- Department of Biology, The University of Mississippi University, MS, United States of America
| | - William J Resetarits
- Department of Biology, The University of Mississippi University, MS, United States of America.,Centers for Water and Wetland Resources, and Biodiversity and Conservation Research, The University of Mississippi University, MS, United States of America
| |
Collapse
|