1
|
Lobato-Fernandez C, Gimeno M, San Martín A, Anorbe A, Rubio A, Ferrer-Bonsoms JA. A Systematic Identification of RNA-Binding Proteins (RBPs) Driving Aberrant Splicing in Cancer. Biomedicines 2024; 12:2592. [PMID: 39595158 PMCID: PMC11591948 DOI: 10.3390/biomedicines12112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alternative Splicing (AS) is a post-transcriptional process that allows a single RNA to produce different mRNA variants and, in some cases, multiple proteins. Various processes, many yet to be discovered, regulate AS. This study focuses on regulation by RNA-binding proteins (RBPs), which are not only crucial for splicing regulation but also linked to cancer prognosis and are emerging as therapeutic targets for cancer treatment. CLIP-seq experiments help identify where RBPs bind on nascent transcripts, potentially revealing changes in splicing status that suggest causal relationships. Selecting specific RBPs for CLIP-seq experiments is often driven by a priori hypotheses. RESULTS We developed an algorithm to detect RBPs likely related to splicing changes between conditions by integrating several CLIP-seq databases and a differential splicing detection algorithm. This work refines a previous study by improving splicing event prediction, testing different enrichment statistics, and performing additional validation experiments. The new method provides more accurate predictions and is included in the Bioconductor package EventPointer 3.14. We tested the algorithm in four experiments involving knockdowns of seven different RBPs. The algorithm accurately assessed the statistical significance of these RBPs using only splicing alterations. Additionally, we applied the algorithm to study sixteen cancer types from The Cancer Genome Atlas (TCGA) and three from TARGET. We identified relationships between RBPs and various cancer types, including alterations in CREBBP and MBNL2 in adenocarcinomas of the lung, liver, prostate, rectum, stomach, and colon. Some of these findings are validated in the literature, while others are novel. CONCLUSIONS The developed algorithm enhances the ability to predict and understand RBP-related splicing changes, offering more accurate predictions and novel insights into cancer-related splicing alterations. This work highlights the potential of RBPs as therapeutic targets and contributes to the broader understanding of their roles in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| | - Juan A. Ferrer-Bonsoms
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| |
Collapse
|
2
|
Cordaro A, Barreca MM, Zichittella C, Loria M, Anello D, Arena G, Sciaraffa N, Coronnello C, Pizzolanti G, Alessandro R, Conigliaro A. Regulatory role of lncH19 in RAC1 alternative splicing: implication for RAC1B expression in colorectal cancer. J Exp Clin Cancer Res 2024; 43:217. [PMID: 39098911 PMCID: PMC11299361 DOI: 10.1186/s13046-024-03139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Aberrant alternative splicing events play a critical role in cancer biology, contributing to tumor invasion, metastasis, epithelial-mesenchymal transition, and drug resistance. Recent studies have shown that alternative splicing is a key feature for transcriptomic variations in colorectal cancer, which ranks third among malignant tumors worldwide in both incidence and mortality. Long non-coding RNAs can modulate this process by acting as trans-regulatory agents, recruiting splicing factors, or driving them to specific targeted genes. LncH19 is a lncRNA dis-regulated in several tumor types and, in colorectal cancer, it plays a critical role in tumor onset, progression, and metastasis. In this paper, we found, that in colorectal cancer cells, the long non-coding RNA H19 can bind immature RNAs and splicing factors as hnRNPM and RBFOX2. Through bioinformatic analysis, we identified 57 transcripts associated with lncH19 and containing binding sites for both splicing factors, hnRNPM, and RBFOX2. Among these transcripts, we identified the mRNA of the GTPase-RAC1, whose alternatively spliced isoform, RAC1B, has been ascribed several roles in the malignant transformation. We confirmed, in vitro, the binding of the splicing factors to both the transcripts RAC1 and lncH19. Loss and gain of expression experiments in two colorectal cancer cell lines (SW620 and HCT116) demonstrated that lncH19 is required for RAC1B expression and, through RAC1B, it induces c-Myc and Cyclin-D increase. In vivo, investigation from biopsies of colorectal cancer patients showed higher levels of all the explored genes (lncH19, RAC1B, c-Myc and Cyclin-D) concerning the healthy counterpart, thus supporting our in vitro model. In addition, we identified a positive correlation between lncH19 and RAC1B in colorectal cancer patients. Finally, we demonstrated that lncH19, as a shuttle, drives the splicing factors RBFOX2 and hnRNPM to RAC1 allowing exon retention and RAC1B expression. The data shown in this paper represent the first evidence of a new mechanism of action by which lncH19 carries out its functions as an oncogene by prompting colorectal cancer through the modulation of alternative splicing.
Collapse
Affiliation(s)
- Aurora Cordaro
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Maria Magdalena Barreca
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Chiara Zichittella
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Denise Anello
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Goffredo Arena
- McGill University Health Centre, Montréal, Canada
- Fondazione Istituto G. Giglio di Cefalù, Cefalù, Italy
| | | | | | - Giuseppe Pizzolanti
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", PROMISE, University of Palermo, Palermo, 90127, Italy
- AteN Center-Advanced Technologies Network Center, University of Palermo, Palermo, 90128, Italy
| | - Riccardo Alessandro
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Tang H, Zhu D, Li W, Zhang G, Zhang H, Peng Q. Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation. Mol Neurobiol 2024:10.1007/s12035-024-04387-y. [PMID: 39090353 DOI: 10.1007/s12035-024-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.
Collapse
Affiliation(s)
- Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China.
| | - Delong Zhu
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Wenxiang Li
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Guozhi Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Heng Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Qiujiao Peng
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| |
Collapse
|
4
|
Yang M, Liu J, Kim P, Zhou X. Study of prognostic splicing factors in cancer using machine learning approaches. Hum Mol Genet 2024; 33:1131-1141. [PMID: 38538560 PMCID: PMC11190612 DOI: 10.1093/hmg/ddae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Life Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, Texas 77030, United States
- McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, Texas 77030, United States
- School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St, Houston, Texas 77054, United States
| |
Collapse
|
5
|
Li Y, Zhao Q, Song X, Song J. [Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1013-1018. [PMID: 35869763 DOI: 10.12122/j.issn.1673-4254.2022.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes. METHODS The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag. RESULTS The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05). CONCLUSION We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.
Collapse
Affiliation(s)
- Y Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China.,Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| | - Q Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China
| | - X Song
- Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - J Song
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| |
Collapse
|
6
|
Tripto E, Orenstein Y. A comparative analysis of RNA-binding proteins binding models learned from RNAcompete, RNA Bind-n-Seq and eCLIP data. Brief Bioinform 2021; 22:6278600. [PMID: 34017982 DOI: 10.1093/bib/bbab149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding post-transcriptional gene regulation is a key challenge in today's biology. The new technologies of RNAcompete and RNA Bind-n-Seq enable the measurement of the binding intensities of one RNA-binding protein (RBP) to numerous synthetic RNA sequences in a single experiment. Recently, Van Nostrand et al. reported the results of RNA Bind-n-Seq experiments measuring binding of 78 human RBPs. Because 31 of these RBPs were also covered by RNAcompete technology, a large-scale comparison between implementations of these two in vitro technologies is now possible. Here, we assessed the similarities and differences between binding models, represented as a list of $k$-mer scores, inferred from RNAcompete and RNA Bind-n-Seq, and also measured how well these models predict in vivo binding. Our results show that RNA Bind-n-Seq- and RNAcompete-derived models agree (Pearson correlation $> 0.5$) for most RBPs (23 out of 31). RNA Bind-n-Seq-derived $k$-mer scores predict RNAcompete binding measurements quite well (average Pearson correlation 0.26), and both technologies produce $k$-mer scores that achieve comparable results in predicting in vivo binding (average AUC 0.7). When inspecting RNA structural preferences inferred from the data of RNA Bind-n-Seq and RNAcompete, we observed high concordance in binding preferences. Through our study, we developed a new $k$-mer score for RNA Bind-n-Seq and extended it to include RNA structural preferences.
Collapse
Affiliation(s)
- Eitamar Tripto
- Department of Biomedical Engineering at Ben-Gurion University of the Negev, Ben-Gurion, 8410501 Beer-Sheva, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering at Ben-Gurion University of the Negev, Ben-Gurion, 8410501 Beer-Sheva, Israel
| |
Collapse
|
7
|
Zhang T, Zhou Y, You B, You Y, Yan Y, Zhang J, Pei Y, Zhang W, Chen J. miR-30a-5p Inhibits Epithelial-to-Mesenchymal Transition by Targeting CDK6 in Nasal Polyps. Am J Rhinol Allergy 2020; 35:152-163. [PMID: 32623901 DOI: 10.1177/1945892420939814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epithelial-to-Mesenchymal Transition (EMT) is considered as a crucial event in disease development and dysregulation of microRNAs (miRNAs) is involved in the regulation of EMT in various human diseases. Emerging evidences congregated over the years have demonstrated that miR-30a-5p was decreased in diseases and its overexpression inhibited the process of diseases via attenuating EMT. Although aberrant expression of miRNAs and occurrence of EMT were previously reported in Nasal Polyps (NPs), the role of miR-30a-5p in EMT of NPs is still remains unclear. OBJECTIVE The purpose of our present study was to explore the expression and potential function of miR-30a-5p in EMT of NPs. METHODS The expression of miR-30a-5p and mRNA expression level were detected by quantitative real-time PCR (qRT-PCR) in transforming growth factor β1 (TGF-β1) - induced EMT model and NPs patients. Western Blot (WB) and immunohistochemistry (IHC) were performed to evaluate the protein expression level of EMT markers. The cells mobility was assessed by Wound-Healing assay. Luciferase reporter assay was utilized to verify the relationship between Cyclin-dependent kinase 6 (CDK6) and miR-30a-5p. RESULTS Firstly, we observed that miR-30a-5p was down-regulated notably, accompanying with the alteration of EMT markers expression in NPs tissues and EMT model induced by TGF-β1 in primary Human Nasal Epithelial Cells (pHNECs) and A549 cells in vitro. Moreover, the functional assays demonstrated that overexpression of miR-30a-5p significantly inhibited EMT and cells mobility. Subsequently, CDK6 was validated as a direct target of miR-30a-5p. Finally, we performed the rescue experiments indicating that overexpression of CDK6 eliminated the suppressive effects of miR-30a-5p in TGF-β1-induced EMT in pHNECs and A549 cells. CONCLUSION Taken together, our results suggested that EMT was involved in NPs, and overexpression of miR-30a-5p could attenuate EMT via repressing the expression of the CDK6 in pHNECs and A549 cells.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Zhou
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yongbing Yan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yinyin Pei
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Chen
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|