1
|
Ferrão L, Morini M, González-Lopéz WA, Gallego V, Felip A, Pérez L, Asturiano JF. Effects of cold seawater pre-treatments on induction of early sexual maturation and sperm production in European eel (Anguilla anguilla). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2489-2503. [PMID: 39235533 PMCID: PMC11573872 DOI: 10.1007/s10695-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
To induce sexual maturation in captivity, eels rely on hormonal treatments, but this process is costly and time-consuming. As an alternative, different types of conditioning, also referred as pre-treatment, have been assessed to ease hormonal treatment response. Recent studies have shown that migrating eels experience a wide range of temperatures, varying from 12 °C at night to as low as to 8 °C during the day. Therefore, this study evaluates the effects of low-temperature (10 °C) seawater pre-treatments of different durations (2 and 4 weeks) on male eel reproduction. The eye, gonadosomatic and hepatosomatic indexes from control (without thermic seawater pre-treatment) and pre-treated fish were measured. Blood and testis samples were also collected for sex steroid and histology analysis, respectively. Eels pre-treated for 2 weeks demonstrated increased progestin levels, comparing with the control group. Eels pre-treated for 4 weeks showed significantly higher gonadosomatic index and elevated androgens and estradiol levels in comparison with the remaining groups. In eels pre-treated for 2 and 4 weeks, there was an increase in the proportion of spermatogonia type B cells compared to undifferentiated spermatogonia type A, a differentiation process that was not observed in the control group. Cold seawater pre-treatment induced early sexual maturation, including steroid production, which consequently stimulated biometric changes and increased spermatogonia differentiation. Following the pre-treatments, eels started receiving standard hormonal treatment (with recombinant human chorionic gonadotropin at 20 °C). Pre-treated males started to spermiate earlier than the control group. In some treatment weeks, pre-treated individuals registered higher values of sperm density, motility, and kinetic parameters. Moreover, an economic evaluation was carried out relating the investment made in terms of hormone injections with the volume of high-quality sperm obtained from each experimental group. The low temperature pre-treatments demonstrated their economic effectiveness in terms of hormone treatment profitability, increasing the production of high-quality sperm in the European eel. Thus, this in vivo study suggests that cold seawater pre-treatment may increase sensitivity to the hormone applied during standard maturation treatment.
Collapse
Affiliation(s)
- L Ferrão
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - M Morini
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - W A González-Lopéz
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - V Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - A Felip
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de La Sal (IATS), CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
2
|
Ferrão L, Blanes-García M, Pérez L, Asturiano JF, Morini M. Superoxidase dismutases (SODs) in the European eel: Gene characterization, expression response to temperature combined with hormonal maturation and possible migratory implications. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111590. [PMID: 38281705 DOI: 10.1016/j.cbpa.2024.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Superoxide dismutases (SODs) are antioxidant enzymes that protect cells from oxidation. Three SODs have been identified in mammals, but there is limited information in teleosts. This study investigates SODs in the European eel and their expression patterns during testis maturation. Phylogenetic and synteny analyses revealed SODs paralogs and their evolution in vertebrates. The eel possesses one SOD1 and two SOD2/3 (a and b), indicating SOD2 and SOD3 duplication in elopomorphs. SODs expression were then evaluated in various male and female tissues. SOD1 is more expressed in females, while SOD2a and SOD2b dominate brain-pituitary-gonad tissues in both sexes. SOD3a showed predominant expression in the ovary and the male livers, whereas SOD3b was found in the pituitary and brain of both sexes. The effects of different maturation protocols (standard hormonal treatment vs. same protocol preceded with cold seawater pre-treatment) on SODs expression during testis maturation were evaluated. Salinity increase at the onset of standard treatment at 20 °C, simulating early migration, upregulated SOD1, SOD2a, and SOD2b, coinciding with spermatogonia type A differentiated cells dominance. Thereafter, SOD2a and SOD3a decreased, while SOD2b increased during hormonal treatment-induced spermatogenesis. Pre-treatment with seawater at 10 °C, mimicking the conditions at the beginning of the seawater migration, downregulated SOD1 but increased SOD3a expression. Finally, the standard hormonal treatment, replicating spawning at higher temperatures, downregulated SOD1 in eels without any pre-treatment while SOD2a expression increased in pre-treated eels. This study revealed tissue-specific, sex-dependent, and maturation-related SOD expression patterns, predicting SODs dynamic expression profiles during their reproductive migration.
Collapse
Affiliation(s)
- L Ferrão
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Blanes-García
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Morini
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Shuai F, Li H, Li J, Jiang T, Yang J, Yang W. Unravelling the life-history patterns and habitat preferences of the Japanese eel (Anguilla japonica) in the Pearl River, China. JOURNAL OF FISH BIOLOGY 2024; 104:387-398. [PMID: 36600527 DOI: 10.1111/jfb.15303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Eels have fascinated biologists for centuries due to their amazing long-distance migrations between freshwater habitats and very distant ocean spawning areas. The migratory life histories of the Japanese eel, Anguilla japonica, in the waters of south China are not very clear despite its ecological importance, and the need for fishery regulation and management. In this study, strontium (Sr) and calcium (Ca) microchemical profiles of the otoliths of silver eels were measured by X-ray electron probe microanalysis based on data collected from different habitats (including freshwater and brackish habitats), in the large subtropical Pearl River. The corresponding habitat preference characteristics were further analysed using redundancy analysis (RDA). A total of 195 Japanese eels were collected over 6 years. The collected individuals ranged from 180 to 771 mm in total length and from 8 to 612 g in body weight. Two-dimensional pictures of the Sr:Ca concentrations in otoliths revealed that the A. japonica in the Pearl River are almost entirely river eels, spending the majority of their lives in fresh water without exposure to salt water, while the catadromous migration time has delayed about 1 month in the Pearl River estuary in the past 20 years. RDA analysis further indicated that juveniles and adults preferred water with high salinity and high tide levels. Youth preferred habitats with high river fractals. Our findings contribute to a growing body of evidence showing that the eels are extremely scarce currently and conservation measures against them are imminent, including the protection of brackish and freshwater areas where they live in south China.
Collapse
Affiliation(s)
- Fangmin Shuai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Tao Jiang
- Key Laboratory of Ecological Environment and Resources of Inland Fisheries, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Yang
- Key Laboratory of Ecological Environment and Resources of Inland Fisheries, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wanling Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
4
|
Huo Y, Gu Y, Cao M, Mao Y, Wang Y, Wang X, Wang G, Li J. Identification and functional analysis of Tex11 and Meig1 in spermatogenesis of Hyriopsis cumingii. Front Physiol 2022; 13:961773. [PMID: 36091389 PMCID: PMC9449974 DOI: 10.3389/fphys.2022.961773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract: The process of spermatogenesis is complex and controlled by many genes. In mammals, Testis-expressed gene 11 (Tex11) and meiosis expressed gene 1 (Meig1) are typical spermatogenesis-related genes. In this study, we obtained the full length cDNAs for Tex11 (3143bp) and Meig1 (1649bp) in Hyriopsis cumingii by cloning. Among them, Hc-Tex11 contains 930 amino acids and Hc-Meig1 contains 91 amino acids. The protein molecular masses (MW) of Hc-Tex11 and Hc-Meig1 were 105.63 kDa and 10.95 kDa, respectively. Protein secondary structure analysis showed that Hc-TEX11 protein has three TPR domains. The expression of Hc-Tex11 and Hc-Meig1 in different tissues showed higher levels in testes. At different ages, the expression of Hc-Tex11 and Hc-Meig1 was higher levels in 3-year-old male mussels. During spermatogenesis, the mRNA levels of Hc-Tex11, Hc-Meig1 gradually increased with the development of spermatogonia and reached a peak during sperm maturation. Hc-Tex11 and Hc-Meig1 mRNA signals were detected on spermatogonia and spermatocytes by in situ hybridization. In addition, RNA interference (RNAi) experiments of Hc-Tex11 caused a down-regulated of Dmrt1, KinaseX, Tra-2 and Klhl10 genes and an up-regulated of β-catenin gene. Based on the above experimental results, it can be speculated that Hc-Tex11 and Hc-Meig1 are important in the development of the male gonadal and spermatogenesis in H. cumingii, which can provide important clues to better comprehend the molecular mechanism of Tex11 and Meig1 in regulating spermatogenesis of bivalves.
Collapse
Affiliation(s)
- Yingduo Huo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Yang Gu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Mulian Cao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Guiling Wang,
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
McCaw BA, Stevenson TJ, Lancaster LT. Epigenetic Responses to Temperature and Climate. Integr Comp Biol 2020; 60:1469-1480. [PMID: 32470117 DOI: 10.1093/icb/icaa049] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
6
|
Nyuji M, Hongo Y, Yoneda M, Nakamura M. Transcriptome characterization of BPG axis and expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine. BMC Genomics 2020; 21:668. [PMID: 32993516 PMCID: PMC7526130 DOI: 10.1186/s12864-020-07080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain–pituitary–gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). Results RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17β-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17β, while 3β-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. Conclusions This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan.
| | - Yuki Hongo
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Michio Yoneda
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| | - Masahiro Nakamura
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| |
Collapse
|