1
|
Cui Z, Amevor FK, Tang B, Qin S, Lan X, Liu L, Liu A. Gga-miR-34b-3p targets calbindin 1 to regulate cellular calcium ion homeostasis during eggshell calcification in chicken uterus. Int J Biol Macromol 2024; 286:138520. [PMID: 39647741 DOI: 10.1016/j.ijbiomac.2024.138520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Improving eggshell quality in poultry is a key breeding goal, and identifying genetic markers that regulate eggshell calcification is essential for accelerating genetic advancements. This study focused on identifying the keys genes and molecular mechanisms that regulate eggshell calcification in the chicken uterus. The results showed that rapid eggshell mineralization began approximately 4 h after the egg enters the uterus, corresponding with observed morphological and histological changes in the uterine tissue. This is associated with increased energy demands and the production of ion transport proteins. Transcriptome analysis identified calbindin-1 (CALB1), ATPase plasma membrane Ca2+ transporting 2 (ATP2B2), and gga-miR-34b-3p as differentially expressed during eggshell formation. CALB1 and ATP2B2 were predicted targets of gga-miR-34b-3p, with roles in maintaining cellular calcium ion balance. A dual-luciferase reporter assay confirmed that gga-miR-34b-3p directly targeted inhibited CALB1 expression, although no significant changes in the luciferase activity were observed with the co-transfection of ATP2B2 wild-type and gga-miR-34b-3p mimic. Validation experiments showed significant increases in CALB1 and ATP2B2 mRNA and protein levels of CALB1 and ATP2B2 in the chicken uterus during eggshell calcification, with CALB1 predominantly expressed in the cytoplasm of uterine tubular gland cells. Furthermore, primary uterine tubular gland cells, identified using immunofluorescence for Cytokertin 18, demonstrated that silencing CALB1 and ATP2B2 increased intracellular Ca2+ concentration in these cells. Taken together, these findings suggest that the gga-miR-34b-3p/CALB1 regulatory axis maintains calcium ion homeostasis in the uterine tubular gland cells, to facilitate continuous and efficient eggshell calcification and thereby enhancing eggshell quality in chickens.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bincheng Tang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Simeng Qin
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| |
Collapse
|
2
|
Jin Q, Wang F, Ye W, Wang Q, Xu S, Jiang S, Li X, Yue M, Yu D, Jin M, Fu A, Li W. Compound Bacillus improves eggshell quality and egg metabolites of hens by promoting the metabolism balance of calcium and phosphorus and uterine cell proliferation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:355-369. [PMID: 39640545 PMCID: PMC11617893 DOI: 10.1016/j.aninu.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Probiotics have beneficial effects on improving egg quality, but there is little research about the effect of probiotics on metabolite composition, and the mechanisms are not yet fully understood. The aim of this study was to investigate the potential mechanisms by which compound Bacillus improves egg quality and metabolite composition. A total of 20,000 Jingfen No. 6 laying hens at 381 d old were randomly divided into two treatments: control group with a basal diet, and the basal diet with 5 × 108 CFU/kg compound Bacillus supplementation (Ba) group. The trial lasted eight weeks. The results showed that compound Bacillus improved the gloss and strength of eggshells and reduced the ratio of sand-shell eggs by 23.8%. Specifically, the effective layer of eggshell was thicker and its calcite column was closely connected. Compound Bacillus increased the contents of beneficial fatty acids in the egg yolk, and lipids and lipid-like molecules in the albumen (P < 0.01), while decreased the contents of total cholesterol, triglycerides, and benzene ring compounds in the egg yolk and organic oxygen compounds in the albumen (P < 0.01). In addition, the compound Bacillus increased the calcium absorption in the duodenum by up-regulating the expression of transporters and serum hormone synergism (P < 0.05), and promoted metabolic balance of calcium and phosphorus. Simultaneously, uterine transcriptome showed that the expression of ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1 (C1GALT1), phosphatidylinositol-4-phosphate 5-kinase type 1 beta (PIP5K1B), methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), brain enriched myelin associated protein 1 (BCAS1), and squalene epoxidase (SQLE) genes were increased (P < 0.01), indicating that nutrient metabolism activity was enhanced. The expression of the BCAS1, C1GALT1, KLF transcription factor 13 (KLF13), and leucine rich repeat neuronal 1 (LRRN1) was increased (P < 0.01), indicating that the cell proliferation was enhanced, which slowed uterus aging. In conclusion, compound Bacillus improved the eggshell strength and metabolite composition in the egg by promoting metabolic balance of calcium and phosphorus, cell proliferation, and nutrient metabolism in the uterus.
Collapse
Affiliation(s)
- Qian Jin
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weisheng Ye
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Shaoxiong Jiang
- Agriculture and Rural Bureau, Yunhe County 323600, Zhejiang Province, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, Hainan Province, China
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
3
|
Gao M, Chen Y, Li X, Li D, Liu A, Gong L, Ning Z, Nie W, Guo Y, Lv Z. Methionine supplementation regulates eggshell quality and uterine transcriptome in late-stage broiler breeders. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:56-69. [PMID: 39628644 PMCID: PMC11612657 DOI: 10.1016/j.aninu.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 12/06/2024]
Abstract
This study aimed to compare the effects of dietary methionine (Met) and 2-hydroxy-4-(methylthio)-butanoate (HMTBA) on the eggshell quality of broiler breeder hens and elucidate the mechanism of Met in improving eggshell quality from the perspectives of eggshell microstructure and shell gland physiological function. A total of 720 WOD188 broiler breeder hens at 40 weeks old were assigned to 3 groups, with 8 replicates per group and 30 birds per replicate. Over 7 weeks, birds were fed a basal diet or the same diet supplemented with 0.15% Met or 0.17% HMTBA. Our findings revealed significant improvements in the Met group for egg shape index, shell thickness, breaking strength, and fracture toughness (P < 0.05), whereas the HMTBA group showed no significant improvements (P > 0.05). Met supplementation increased calcium and phosphorus levels in both serum and shell gland tissue (P < 0.05), and enhanced Ca2+ ATPase activity in shell gland tissue (P < 0.05). Histomorphological changes cluded enhanced mucosal fold dimensions and increased epithelial height in the shell gland (P < 0.05). Met also improved eggshell ultrastructure, resulting in a thicker effective layer and broader mammillae with fewer type B structures (P < 0.05). The mRNA levels for genes regulating eggshell ultrastructure, such as ovocleidin-116 (OC-116), calbindin 1 (CALB1), and integral membrane protein 2C (ITM2C), were significantly upregulated in the Met group (P < 0.05). Transcriptome analysis identified 248 differentially upregulated genes in the Met group, primarily linked to the non-canonical Wnt/Ca2+ signaling pathway, crucial for calcium ion transport and cellular proliferation. This research highlights that Met supplementation improves eggshell quality by enhancing calcium transport and cellular proliferation in uterine function, particularly through the modulation of Wnt family member 11 (WNT11) and CALB1, influencing calcium deposition and ultrastructural development.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youying Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaomin Li
- Beijing Huadu Yukou Poultry Industry Co., Ltd., Beijing 101206, China
| | - Dongli Li
- Beijing Huadu Yukou Poultry Industry Co., Ltd., Beijing 101206, China
| | - Aiqiao Liu
- Beijing Huadu Yukou Poultry Industry Co., Ltd., Beijing 101206, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Shao D, Liu L, Tong H. Responses of laying performance, eggshell quality, calcium, and phosphorus metabolism to feeding patterns and dietary available phosphorus levels in aged laying hens. Poult Sci 2024; 104:104469. [PMID: 39561556 PMCID: PMC11617282 DOI: 10.1016/j.psj.2024.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
This study aimed to determine the effects of feeding patterns and dietary available phosphorus levels on laying performance, eggshell quality, calcium, and phosphorus metabolism in aged laying hens. The experiment followed a 3 × 2 factorial arrangement of three feeding patterns (feeding twice a day, 1/2 daily feeding at 8:00, and 1/2 daily feeding at 14:00; disequilibrium feeding twice a day, 1/3 daily feeding at 8:00, and 2/3 daily feeding at 14:00; feeding thrice a day, 1/3 daily feeding at 8:00, 1/3 daily feeding at 14:00, and 1/3 daily feeding at 18:00) and two available phosphorus levels (0.32 %, 0.27 %) was carried out with a total of 528 Hy-Line Brown laying hens aged 62-74 weeks. Each group had 8 replicates of 11 hens. The results revealed that feeding patterns and phosphorus levels significantly interacted with egg production ratios, soft shell and broken egg ratios in weeks 9-12 (P < 0.05). Feeding thrice a day and disequilibrium feeding twice a day significantly improved the equatorial and average eggshell thickness (P < 0.05), and had a trend of increasing eggshell strength at week 12 (P= 0.068). They also significantly increased the effective layer thickness and the calcified layer thickness of the eggshell (P < 0.05). Additionally, feeding thrice a day significantly increased serum calcium content compared with feeding twice a day (P < 0.05), and feeding thrice a day significantly increased the calcium content of the eggshell, mRNA expression level of CaBP-D28k in the uterine compared with the other two feeding patterns (P < 0.05). While disequilibrium feeding twice a day resulted in higher phosphorus content in the excreta compared with the other two feeding patterns (P < 0.05). These results indicated that feeding hens thrice a day with 0.27 % dietary available phosphorus level might improve in laying performance and eggshell quality of aged laying hens.
Collapse
Affiliation(s)
- Dan Shao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Liangji Liu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
5
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Song L, Weng K, Bao Q, Wu J, Zhang Y, Xu Q, Zhang Y. TMT-based quantitative proteomic analysis unveils uterine fluid difference in hens producing normal and pimpled eggs. Poult Sci 2023; 102:103081. [PMID: 37774518 PMCID: PMC10542640 DOI: 10.1016/j.psj.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
Eggshell is a crucial indicator of egg quality. Pimpled eggs (PE) a type of eggshell defect are characterized by low eggshell strength, leading to substantial financial losses. Eggshell formation occurs in the uterine fluid (UF), which contains the required ions and matrix proteins However, the underlying mechanisms of PE formation remain poorly understood. In this study, we analyzed the egg quality of PE, and normal eggs (NE) by examining the differences in UF from hens producing PE and NE (n = 6 each). This 2-wk-long assessment involved histomorphological and proteomics analyses. The results showed that NE had better eggshell quality compared to PE, and the uterus structure in PE hens was conducive to the formation of PE. Using quantitative proteomic analysis, we identified 68 differential abundance proteins (DAPs) in the UF of PE hens, including 9 key proteins related to ion transport, protein synthesis and folding, and immunity. Downregulation of CALM1 and SCNN1G proteins in PE hens might have negatively affected the calcium signaling pathway, decreasing the calcium amount in UF. Additionally, the PHB1 and TSN proteins may affect eggshell formation by regulating immune responses. Taken together, our results provide insights into the mechanism of PE production, with potential applications for enhancing eggshell quality.
Collapse
Affiliation(s)
- Lina Song
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiang Bao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jia Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
7
|
Cheng X, Ma Y, Li X, Liu Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. Structural characteristics of speckled chicken eggshells and their effect on reproductive performance. Poult Sci 2022; 102:102376. [PMID: 36565627 PMCID: PMC9801207 DOI: 10.1016/j.psj.2022.102376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
Speckles are common on the brown eggshells of chicken eggs, especially for aged hens. They are important as they affect the consumer preference and economic value of eggs. The cause of speckles in eggshells is still unclear. In this study, we verified the difference of eggshell quality between speckled eggs and normal eggs. Structural characteristics of speckled eggshells were investigated using a scanning electron microscope. Results showed no significant difference in the eggshell quality between normal eggs and speckled eggs, except for a lower eggshell color-L value in the latter. More materials deposited between vertical crystal layer and cuticle layer in the speckled shell region, leading to the thicker eggshell than adjacent normal area. The relative content of protoporphyrin IX was significantly higher in the speckled area than in the adjacent normal area of the eggshells. In addition, there was no significant differences in productive and reproductive performance between hens that laid normal eggs or speckled eggs, except for a lower hatchability of the speckled eggs. In conclusion, we infer that the uneven distribution of eggshell pigment protoporphyrin IX leads to the formation of speckled eggs. This is the first study to establish the characteristics and causes of speckled eggshells. Moreover, this study provides novel insights into external egg quality and a foundation for the in-depth study of speckled eggshells.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Ma
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinghua Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiqi Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cuidie Fan
- Hebei Rongde Poultry Breeding Company Limited, Hebei 053000, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Corresponding authors:
| |
Collapse
|
8
|
Han G, Kim J, Kim JM, Kil D. Transcriptomic analysis of the liver in aged laying hens with different eggshell strength. Poult Sci 2022; 102:102217. [PMID: 36343436 PMCID: PMC9646969 DOI: 10.1016/j.psj.2022.102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Eggshell is composed of a very ordered and mineralized structure and is important for egg quality. Eggshell strength is particularly important because of its direct association with economic outcomes and egg safety. Various factors related to laying hens and their environment affects eggshell strength. However, the molecular mechanisms of liver functions related to decreased eggshell strength of aged laying hens are largely unknown. Therefore, this study aimed to identify potential factors affecting eggshell strength in aged laying hens at the hepatic transcriptomic level. A total of five hundred 92-wk-old Hy-line Brown laying hens were screened to select those exhibiting the greatest variation in eggshell strength. Based on the final eggshell strength, 12 hens producing eggs with strong eggshell strength (SES) and weak eggshell strength (WES) were finally selected (n = 6) for liver tissue sampling. The RNA-sequencing was performed to identify differentially expressed genes (DEGs) between the 2 groups. We identified a total of 2,084 DEGs, of which 1,358 genes were upregulated and 726 genes were downregulated in the WES group compared with SES group. According to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, the DEGs indicated the mammalian target of rapamycin signaling pathway, the Janus kinase-signal transducer and activator of transcription pathway, the mitogen‑activated protein kinase signaling pathway, and the insulin resistance pathways. Genes related to fatty liver disease were upregulated in WES group compared with SES group. In addition, expression of several genes associated with oxidative stress and bone resorption activity was altered in aged laying hens with different eggshell strength. Overall, these findings contribute to the identification of genes involved in different intensity of eggshell strength, enabling more understanding of the hepatic molecular mechanism underlying in decreased eggshell strength of aged laying hens.
Collapse
|
9
|
Wu Y, Sun Y, Zhang H, Xiao H, Pan A, Shen J, Pu Y, Liang Z, Du J, Pi J. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality. Front Genet 2022; 13:927670. [PMID: 36212119 PMCID: PMC9536113 DOI: 10.3389/fgene.2022.927670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Eggshell strength and thickness are critical factors in reducing the egg breaking rate and preventing economic losses. The calcite biomineralization process is very important for eggshell quality. Therefore, we employed transcriptional sequencing and proteomics to investigate the differences between the uteruses of laying hens with high- and low-breaking-strength shells. Results: A total of 1,028 differentially expressed genes (DEGs) and 270 differentially expressed proteins (DEPs) were identified. The analysis results of GO terms and KEGG pathways showed that most of the DEGs and DEPs were enriched in vital pathways related to processes such as calcium metabolism, hormone and amino acid biosynthesis, and cell proliferation and apoptosis. Several DEGs and DEPs that were coexpressed at mRNA and protein levels were verified. KRT14 (keratin-14) is a candidate gene (protein) obtained by multiple omics analysis due to the fold difference of KRT14 being the largest. After the overexpression of KRT14 in uterine epithelial cells, the expressions of OC116 (ovocleididin-116), CALB1 (calbindin 1), and BST1 (ADP-ribosyl cyclase 2) were found to be increased significantly, while the expression of OC17 (ovocleididin-17) was found to be decreased significantly. Conclusion: In summary, this study confirms that during normal calcification, there are differences in ion transport between the uterus of hens producing high-breaking-strength eggshells and those producing low-breaking-strength eggshells, which may help elucidate the eggshell calcification process. The KRT14 gene may promote calcium metabolism and deposition of calcium carbonate in eggshells.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Yanyan Sun
- Institute of Animal Sciences of CAAS, Beijing, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- *Correspondence: Jinsong Pi,
| |
Collapse
|
10
|
Zhang Y, Deng Y, Jin Y, Wang S, Huang X, Li K, Xia W, Ruan D, Wang S, Chen W, Zheng C. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poult Sci 2021; 101:101573. [PMID: 34847529 PMCID: PMC8637142 DOI: 10.1016/j.psj.2021.101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/05/2022] Open
Abstract
This study evaluated the changes in eggshell mechanical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation between laying ducks in the peak (young duck) and late phase (aged duck) of production. A total of 84 healthy young (31 wk of age) and 84 healthy aged (65 wk of age) Longyan laying ducks were each divided into 6 replicates of 14 birds, and caged individually. All the ducks were fed in one house with the same corn-soybean meal-based diet for 5 wk. The eggshell mechanical properties (shell proportion, thickness, breaking strength, and fracture toughness) and chemical components (matrix proteins, calcium, phosphorus, and magnesium) decreased in aged laying ducks (P < 0.05). Shell structural indices: total thickness, effective thickness and its proportion decreased, whereas mammillary knob width and its proportion increased (P < 0.05). The regulation values of early fusion, cuffing, caps, and total score of mammillary knobs were higher in aged laying ducks relative to the young ducks (P < 0.05). During the initial, growth and terminal stages of eggshell formation, shell thickness and breaking strength (terminal), shell weight, and its proportion (terminal) decreased in aged laying ducks (P < 0.05). Ultrastructural changes during shell formation indicated that the mammillary-knob density and effective thickness decreased (P < 0.05). Decreases occurred in serum content of phosphorus (growth), and estradiol and calcium contents (terminal) (P < 0.05). Relative expression of Ca2+ transporter and HCO3− exchanger, and matrix proteins genes decreased in aged laying ducks (P < 0.05) at all stages of eggshell formation. Collectively, the decreased incidence of early fusion and caps, increased thickness and width of mammillary knobs, and decreased effective thickness are the crucial differences leading to the compromised mechanical properties of eggshell in the late laying period. A disturbed regulation of calcium metabolism and uterine expression of ion transporters, especially for HCO3− exchange of aged laying ducks likely contribute to age-induced ultrastructural deterioration of the eggshell.
Collapse
Affiliation(s)
- Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yuanzhong Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yongyan Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuebing Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaichao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Weiguang Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Khogali MK, Wen K, Jauregui D, Liu L, Zhao M, Gong D, Geng T. Uterine structure and function contributes to the formation of the sandpaper-shelled eggs in laying hens. Anim Reprod Sci 2021; 232:106826. [PMID: 34403835 DOI: 10.1016/j.anireprosci.2021.106826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The avian eggshell is formed in the uterus, and eggshell quality usually decreases markedly in the late phase of hen laying cycles. Production of sandpaper-shelled eggs (SE), a category of eggs with relatively less eggshell quality, causes a great economic loss. Underlying mechanisms of SE formation, however, remain unclear. For the present study, it was hypothesized that alterations in uterine structure and function contribute to SE formation. To test this hypothesis, uterine samples were collected from 450-day-old hens that produced normal eggs (NE) and SE (based on 2-week-long assessments, n = 10) for histomorphological and transcriptome analyses. Compared with the NE group, uteri of the SE group were apparently atrophied. Furthermore, a total of 211 differentially expressed genes (DEGs) were identified in the uteri of hens of the two groups. These DEGs were clustered into 145 gene ontology terms (FDR < 0.05) and enriched in 12 KEGG pathways (P < 0.10), which are primarily related to organ morphogenesis and development, cell growth, differentiation and death, ion transport, endocrine and cell communication, immune response, and corticotropin-releasing hormones. In particular, corticotropin may be an important factor in SE formation because of effects on ion transport. Furthermore, as indicated by lesser abundances of relevant mRNA transcripts, the lesser expression of genes related to ion transport and matrix proteins also contribute to SE production because of effects on eggshell formation. In conclusion, results from this study revealed there were structural and functional differences in the hen uterus in NE and SE groups.
Collapse
Affiliation(s)
- Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, 13314, Sudan
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Diego Jauregui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
12
|
Feng J, Zhang HJ, Wu SG, Qi GH, Wang J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics 2020; 21:770. [PMID: 33167850 PMCID: PMC7654033 DOI: 10.1186/s12864-020-07177-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lower eggshell quality in the late laying period leads to economic loss. It is a major threat to the quality and safety of egg products. Age-related variations in ultrastructure were thought to induce this deterioration. Eggshell formation is a highly complex process under precise regulation of genes and biological pathways in uterus of laying hens. Herein, we evaluated the physical, mechanical and ultrastructure properties of eggshell and conducted RNA sequencing to learn the transcriptomic differences in uterus between laying hens in the peak (young hens) and late phase (aged hens) of production. Results The declined breaking strength and fracture toughness of eggshell were observed in aged hen group compared to those in young hen group, accompanied with ultrastructure variations including the increased thickness of mammillary layer and the decreased incidence of early fusion. During the initial stage of eggshell formation, a total of 183 differentially expressed genes (DEGs; 125 upregulated and 58 downregulated) were identified in uterus of laying hens in the late phase in relative to those at peak production. The DEGs annotated to Gene Ontology terms related to antigen processing and presentation were downregulated in aged hens compared to young hens. The contents of proinflammatory cytokine IL-1β in uterus were higher in aged hens relative to those in young hens. Besides, the genes of some matrix proteins potentially involved in eggshell mineralization, such as ovalbumin, versican and glypican 3, were also differentially expressed between two groups. Conclusions Altered gene expression of matrix proteins along with the compromised immune function in uterus of laying hens in the late phase of production may conduce to age-related impairments of eggshell ultrastructure and mechanical properties. The current study enhances our understanding of the age-related deteriorations in eggshell ultrastructure and provides potential targets for improvement of eggshell quality in the late laying period. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07177-7.
Collapse
Affiliation(s)
- Jia Feng
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Zhang J, Wang Z, Wang X, Sun L, Rajput SA, Qi D. The paradoxical effects of progesterone on the eggshell quality of laying hens. J Struct Biol 2020; 209:107430. [PMID: 31783140 DOI: 10.1016/j.jsb.2019.107430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
This study demonstrates the effects of progesterone on eggshell quality and ultrastructure by injecting progesterone into laying hens 2 and 5 h post-oviposition, respectively. Progesterone injected 2 h post-oviposition (P4-2 h) improved eggshell quality with a significant decrease (P < 0.01) in the thickness of the mammillary layer and a significant increase (P < 0.01) in the thickness of the effective layer in the eggshell ultrastructure compared to the control. Progesterone injected 5 h post-oviposition (P4-5 h) damaged the eggshell quality by significantly reducing (P < 0.01) the effective layer thickness. Progesterone injected delayed obviously (P < 0.01) the following oviposition. Moreover, the concentrations of Thr, Cys, Leu, Lys, and His in the eggshell membranes were significantly higher (P < 0.05) in the P4-2 h treated hens whereas Val and Lys were significantly lower (P < 0.05) in P4-5 h treated hens compared to the control. Therefore, progesterone shows paradoxical effects on eggshell quality depending on the injection time-points post-oviposition, which could explain the contradictions in previous related reports. P4 injected affected the content of amino acids in eggshell membranes, especially lysine which contributed to eggshell quality. In addition, P4 injected 2 h after oviposition improved eggshell quality by promoting the premature fusion of mammillary knobs. This work contributed to a novel insight to understanding the mechanism of improving eggshell quality.
Collapse
Affiliation(s)
- Jiacai Zhang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyun Wang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xu Wang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|