1
|
Huang J, Li T, Zhu Y, Li Q, Kuo CJ, Guo X, Wei B, Ni P, Dong K. Molecular Characterization and Potential Host-switching of Swine Farm associated Clostridioides difficile ST11. Vet Microbiol 2024; 294:110129. [PMID: 38810364 DOI: 10.1016/j.vetmic.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE To conduct molecular prevalence and genetic polymorphism analysis of 24 Swine Farm associated C. difficile ST11 strains, in addition to other representative sequenced ST strains. METHODS The collected C. difficile strains underwent whole genome sequencing and bioinformatic analysis using the illumina NovaSeq platform, SPAdes, Prokka, MOB-suite, and FastTree. Virulence and antibiotic resistance genes were identified through NCBI Pathogen Database. Cytotoxicity tests were conducted on HT-29 cells and Vero cells to verify the function of toxin A and toxin B. RESULTS The most prevalent resistance genes in ST11 were found to be against β-lactamases, aminoglycosides, and tetracycline. A C. difficile isolate (strain 27) with tcdA deletion and high antibiotic resistance genes was far apart from other swine farm associated ST11 isolates in the phylogenetic branch. The remarkable genetic similarity between animal and human C. difficile strains suggests potential transmission of ST11 strains between animals and humans. The plasmid replicon sequences repUS43 were identified in all ST11 strains except one variant (strain 27), and 91.67% (22/24) of these were assessed by MOB-typer as having mobilizable plasmids. CONCLUSION Swine farm associated C. difficile ST11 carried fewer virulence genes than ST11 strains collected from NCBI database. It is critical to monitor the evolution of C. difficile strains to understand their changing characteristics, host-switching, and develop effective control and prevention strategies.
Collapse
Affiliation(s)
- Jiewen Huang
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tinghua Li
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiwen Wei
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peihua Ni
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ke Dong
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Marvaud JC, Bouttier S, Saunier J, Kansau I. Clostridioides difficile Flagella. Int J Mol Sci 2024; 25:2202. [PMID: 38396876 PMCID: PMC10889297 DOI: 10.3390/ijms25042202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is an important pathogen for humans with a lead in nosocomial infection, but it is also more and more common in communities. Our knowledge of the pathology has historically been focused on the toxins produced by the bacteria that remain its major virulence factors. But the dysbiosis of the intestinal microbiota creating the conditions for the colonization appears to be fundamental for our understanding of the disease. Colonization implies several steps for the bacteria that do or do not use their capacity of motility with the synthesis of flagella. In this review, we focus on the current understanding of different topics on the C. difficile flagellum, ranging from its genetic organization to the vaccinal interest in it.
Collapse
Affiliation(s)
- Jean-Christophe Marvaud
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| | - Sylvie Bouttier
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| | - Johanna Saunier
- Matériaux et Santé, Faculté de pharmacie, Université Paris Saclay, 91400 Orsay, France
| | - Imad Kansau
- Institut MICALIS, INRAE, AgroParisTech, Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France (I.K.)
| |
Collapse
|
3
|
Gu W, Li W, Jia S, Zhou Y, Yin J, Wu Y, Fu X. Antibiotic resistance and genomic features of Clostridioides difficile in southwest China. PeerJ 2022; 10:e14016. [PMID: 36093337 PMCID: PMC9454788 DOI: 10.7717/peerj.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Clostridioides difficile infection (CDI) caused by toxigenic strains leads to antibiotic-related diarrhea, colitis, or even fatal pseudomembranous enteritis. Previously, we conducted a cross-sectional study on prevalence of CDI in southwest China. However, the antibiotics resistance and characteristics of genomes of these isolates are still unknown. Methods Antibiotic susceptibility testing with E-test strips and whole genome sequence analysis were used to characterize the features of these C. difficile isolates. Results Forty-nine strains of C. difficile were used in this study. Five isolates were non-toxigenic and the rest carried toxigenic genes. We have previously reported that ST35/RT046, ST3/RT001 and ST3/RT009 were the mostly distributed genotypes of strains in the children group. In this study, all the C. difficile isolates were sensitive to metronidazole, meropenem, amoxicillin/clavulanic acid and vancomycin. Most of the strains were resistant to erythromycin, gentamicin and clindamycin. The annotated resistant genes, such as macB, vanRA, vanRG, vanRM, arlR, and efrB were mostly identified related to macrolide, glycopeptide, and fluoroquinolone resistance. Interestingly, 77.55% of the strains were considered as multi-drug resistant (MDR). Phylogenetic analysis based on core genome of bacteria revealed all the strains were divided into clade 1 and clade 4. The characteristics of genome diversity for clade 1 could be found. None of the isolates showed 18-bp deletion of tcdC as RT027 strain as described before, and polymorphism of tcdB showed a high degree of conservation than tcdA gene. Conclusions Most of the C. difficile isolates in this study were resistant to macrolide and aminoglycoside antibiotics. Moreover, the MDR strains were commonly found. All the isolates belonged to clade 1 and clade 4 according to phylogenetic analysis of bacterial genome, and highly genomic diversity of clade 1 was identified for these strains.
Collapse
Affiliation(s)
- Wenpeng Gu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Senquan Jia
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yongming Zhou
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Jianwen Yin
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaoqing Fu
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| |
Collapse
|
5
|
Gu W, Wang W, Li W, Li N, Wang Y, Zhang W, Lu C, Tong P, Han Y, Sun X, Lu J, Wu Y, Dai J. New ribotype Clostridioides difficile from ST11 group revealed higher pathogenic ability than RT078. Emerg Microbes Infect 2021; 10:687-699. [PMID: 33682630 PMCID: PMC8023612 DOI: 10.1080/22221751.2021.1900748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022]
Abstract
Clostridioides difficile is the predominant antibiotic-associated enteropathogen associated with diarrhoea or pseudomembranous colitis in patients worldwide. Previously, we identified C. difficile RT078 isolates (CD21062) from elderly patients in China, including two new ribotype strains (CD10010 and CD12038) belonging to the ST11 group, and their genomic features were also investigated. This study compared sporulation, spore germination, toxin expression, flagellar characteristics, and adhesion among these strains in vitro and analysed their pathogenic ability in vivo using animal models. The results showed sporulation and spore germination did not significantly differ among the three C. difficile strains. CD10010 and CD12038 showed higher transcriptional levels of toxins until 48 h; thereafter, the transcriptional levels of toxins remained constant among RT078, CD10010, and CD12038. RT078 showed a loss of flagellum and its related genes, whereas CD12038 showed the highest motility in vitro. Both CD10010 and CD12038 initially showed flg phase OFF, and the flagellar switch reversed to phase ON after 48 h in swim agar. Flagellar proteins and toxins were both upregulated when flg phase OFF changed to flg phase ON status, enhancing their pathogenic ability. CD12038 showed the highest adhesion to Hep-2 cells. Histopathology and inflammation scores demonstrated that CD12038 caused the most severe tissue damage and infection in vivo. The new ribotype strains, particularly CD12038, exhibit higher pathogenic ability than the typical RT078 strain, both in vitro and in vivo. Therefore, more attention should be paid to this new C. difficile strain in epidemiological research; further studies are warranted.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenzhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jinxing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| |
Collapse
|