1
|
Dogantzis KA, Patel H, Rose S, Conflitti IM, Dey A, Tiwari T, Chapman NC, Kadri SM, Patch HM, Muli EM, Alqarni AS, Allsopp MH, Zayed A. Accurate Detection of scutellata-Hybrids (Africanized Bees) Using a SNP-Based Diagnostic Assay. Ecol Evol 2024; 14:e70554. [PMID: 39554880 PMCID: PMC11569865 DOI: 10.1002/ece3.70554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Hybrid populations of Africanized honey bees (scutellata-hybrids), notable for their defensive behaviour, have spread rapidly throughout South and North America since their unintentional introduction. Although their migration has slowed, the large-scale trade and movement of honey bee queens and colonies raise concern over the accidental importation of scutellata-hybrids to previously unoccupied areas. Therefore, developing an accurate and robust assay to detect scutellata-hybrids is an important first step toward mitigating risk. Here, we used an extensive population genomic dataset to assess the genomic composition of Apis mellifera native populations and patterns of genetic admixture in North and South American commercial honey bees. We used this dataset to develop a SNP assay, where 80 markers, combined with machine learning classification, can accurately differentiate between scutellata-hybrids and non-scutellata-hybrid commercial colonies. The assay was validated on 1263 individuals from colonies located in Canada, the United States, Australia and Brazil. Notably, we demonstrate that using a reduced SNP set of as few as 10 loci can still provide accurate results.
Collapse
Affiliation(s)
| | | | - Stephen Rose
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Alivia Dey
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Nadine C. Chapman
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Samir M. Kadri
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal ScienceSão Paulo State University (UNESP)BotucatuSão PauloBrazil
| | - Harland M. Patch
- Department of EntomologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Elliud M. Muli
- Department of Life ScienceSouth Eastern Kenya University (SEKU)KituiKenya
| | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Michael H. Allsopp
- Plant Protection & HealthAgricultural Research CouncilStellenboschSouth Africa
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
2
|
Cui Y, Yan J, Jiang L, Wang J, Huang M, Zhao X, Shi S. Needle and Branch Trait Variation Analysis and Associated SNP Loci Mining in Larix olgensis. Int J Mol Sci 2024; 25:10212. [PMID: 39337698 PMCID: PMC11432355 DOI: 10.3390/ijms251810212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Needles play key roles in photosynthesis and branch growth in Larix olgensis. However, genetic variation and SNP marker mining associated with needle and branch-related traits have not been reported yet. In this study, we examined 131 samples of unrelated genotypes from L. olgensis provenance trails. We investigated phenotypic data for seven needle and one branch-related traits before whole genome resequencing (WGRS) was employed to perform a genome-wide association study (GWAS). Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci that were significantly correlated with the studied traits. We identified a total of 243,090,868 SNP loci, and among them, we discovered a total of 161 SNP loci that were significantly associated with these traits using a general linear model (GLM). Based on the GWAS results, Kompetitive Allele-Specific PCR (KASP), designed based on the DNA of population samples, were used to validate the loci associated with L. olgensis phenotypes. In total, 20 KASP markers were selected from the 161 SNPs loci, and BSBM01000635.1_4693780, BSBM01000114.1_5114757, and BSBM01000114.1_5128586 were successfully amplified, were polymorphic, and were associated with the phenotypic variation. These developed KASP markers could be used for the genetic improvement of needle and branch-related traits in L. olgensis.
Collapse
Affiliation(s)
- Ying Cui
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Jiawei Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Luping Jiang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Manman Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (Y.C.)
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, the Chinese Academy of Forestry, 1958 Box, Beijing 100091, China
| |
Collapse
|
3
|
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, Mars N, Ripatti S, Palotie A, Donner K, Carpén O. High-Resolution Genotyping of Formalin-Fixed Tissue Accurately Estimates Polygenic Risk Scores in Human Diseases. J Transl Med 2024; 104:100325. [PMID: 38220043 DOI: 10.1016/j.labinv.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anu Loukola
- Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Yossra H S Zidi-Mouaffak
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
4
|
Aguirre NC, Villalba PV, García MN, Filippi CV, Rivas JG, Martínez MC, Acuña CV, López AJ, López JA, Pathauer P, Palazzini D, Harrand L, Oberschelp J, Marcó MA, Cisneros EF, Carreras R, Martins Alves AM, Rodrigues JC, Hopp HE, Grattapaglia D, Cappa EP, Paniego NB, Marcucci Poltri SN. Comparison of ddRADseq and EUChip60K SNP genotyping systems for population genetics and genomic selection in Eucalyptus dunnii (Maiden). Front Genet 2024; 15:1361418. [PMID: 38606359 PMCID: PMC11008695 DOI: 10.3389/fgene.2024.1361418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.
Collapse
Affiliation(s)
| | | | - Martín Nahuel García
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Juan Gabriel Rivas
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - María Carolina Martínez
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Augusto J. López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Juan Adolfo López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Pablo Pathauer
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Dino Palazzini
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Leonel Harrand
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Javier Oberschelp
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Martín Alberto Marcó
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Esteban Felipe Cisneros
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Rocío Carreras
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Ana Maria Martins Alves
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - H. Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Dario Grattapaglia
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | - Eduardo Pablo Cappa
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
5
|
Estravis Barcala M, van der Valk T, Chen Z, Funda T, Chaudhary R, Klingberg A, Fundova I, Suontama M, Hallingbäck H, Bernhardsson C, Nystedt B, Ingvarsson PK, Sherwood E, Street N, Gyllensten U, Nilsson O, Wu HX. Whole-genome resequencing facilitates the development of a 50K single nucleotide polymorphism genotyping array for Scots pine (Pinus sylvestris L.) and its transferability to other pine species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:944-955. [PMID: 37947292 DOI: 10.1111/tpj.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype-environment and genotype-phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.
Collapse
Affiliation(s)
- Maximiliano Estravis Barcala
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tom van der Valk
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Zhiqiang Chen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tomas Funda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Rajiv Chaudhary
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Adam Klingberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
- Skogforsk, Sävar, Uppsala, Sweden
| | - Irena Fundova
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Uppsala, Sweden
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ellen Sherwood
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nathaniel Street
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Montanari S, Deng C, Koot E, Bassil NV, Zurn JD, Morrison-Whittle P, Worthington ML, Aryal R, Ashrafi H, Pradelles J, Wellenreuther M, Chagné D. A multiplexed plant-animal SNP array for selective breeding and species conservation applications. G3 (BETHESDA, MD.) 2023; 13:jkad170. [PMID: 37565490 PMCID: PMC10542201 DOI: 10.1093/g3journal/jkad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Ltd, Motueka 7198, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland 1025, New Zealand
| | - Emily Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Jason D Zurn
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson 7010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| |
Collapse
|
7
|
Velasco VME, Ferreira A, Zaman S, Noordermeer D, Ensminger I, Wegrzyn JL. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir). G3 (BETHESDA, MD.) 2023; 13:jkac304. [PMID: 36454025 PMCID: PMC10468028 DOI: 10.1093/g3journal/jkac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more "complete" genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.
Collapse
Affiliation(s)
| | - Alyssa Ferreira
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Sumaira Zaman
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| | - Devin Noordermeer
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto,
Mississauga, ON L5L 1C8, Canada
- Graduate Department of Cell and Systems Biology, University of
Toronto, Toronto, ON M5S, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of
Toronto, Toronto, ON M5S, Canada
| | - Jill L Wegrzyn
- Department of Evolution and Ecology, University of
Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
8
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Chen ZQ, Zan Y, Zhou L, Karlsson B, Tuominen H, García-Gil MR, Wu HX. Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce. FRONTIERS IN PLANT SCIENCE 2022; 13:927673. [PMID: 36017254 PMCID: PMC9396349 DOI: 10.3389/fpls.2022.927673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover ~130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yanjun Zan
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Hannele Tuominen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria Rosario García-Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) National Collection Research Australia, Black Mountain Laboratory, Canberra, ACT, Australia
| |
Collapse
|
10
|
Genomic Prediction of Complex Traits in Perennial Plants: A Case for Forest Trees. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2467:493-520. [PMID: 35451788 DOI: 10.1007/978-1-0716-2205-6_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter provides an overview of the genomic selection progress in long-lived forest tree species. Factors affecting the prediction accuracy in genomic prediction are assessed with examples from empirical studies. Infrastructure and resources required for the implementation of genomic selection are evaluated. Some general guidelines are provided for the successful application of genomic selection in forest tree breeding programs.
Collapse
|
11
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
12
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
13
|
Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don). FORESTS 2022. [DOI: 10.3390/f13020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging off a previously developed exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms (SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array (NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and 20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on more than 8000 samples, including material from archival progenitors, current breeding trials, nursery material, clonal lines, and material from Australia. Our analyses indicate that the array is performing well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage groups. Using genotypic data from this array, we were also able to differentiate representatives of the five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe. Furthermore, principal component analysis of genotyped trees revealed clear patterns of population structure, with the primary axis of variation driven by provenance ancestry and the secondary axis reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine breeding program.
Collapse
|
14
|
Cronn RC, Finch KN, Hauck LL, Parker-Forney M, Milligan BG, Dowling J, Scientists A. Range-wide assessment of a SNP panel for individualization and geolocalization of bigleaf maple (Acer macrophyllum Pursh). FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2021. [DOI: 10.1016/j.fsiae.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
16
|
Caballero M, Lauer E, Bennett J, Zaman S, McEvoy S, Acosta J, Jackson C, Townsend L, Eckert A, Whetten RW, Loopstra C, Holliday J, Mandal M, Wegrzyn JL, Isik F. Toward genomic selection in Pinus taeda: Integrating resources to support array design in a complex conifer genome. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11439. [PMID: 34268018 PMCID: PMC8272584 DOI: 10.1002/aps3.11439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 05/13/2023]
Abstract
PREMISE An informatics approach was used for the construction of an Axiom genotyping array from heterogeneous, high-throughput sequence data to assess the complex genome of loblolly pine (Pinus taeda). METHODS High-throughput sequence data, sourced from exome capture and whole genome reduced-representation approaches from 2698 trees across five sequence populations, were analyzed with the improved genome assembly and annotation for the loblolly pine. A variant detection, filtering, and probe design pipeline was developed to detect true variants across and within populations. From 8.27 million variants, a total of 642,275 were evaluated and 423,695 of those were screened across a range-wide population. RESULTS The final informatics and screening approach delivered an Axiom array representing 46,439 high-confidence variants to the forest tree breeding and genetics community. Based on the annotated reference genome, 34% were located in or directly upstream or downstream of genic regions. DISCUSSION The Pita50K array represents a genome-wide resource developed from sequence data for an economically important conifer, loblolly pine. It uniquely integrates independent projects that assessed trees sampled across the native range. The challenges associated with the large and repetitive genome are addressed in the development of this resource.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Edwin Lauer
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Jeremy Bennett
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Susan McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Juan Acosta
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Colin Jackson
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Laura Townsend
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Andrew Eckert
- Department of BiologyVirginia Commonwealth UniversityRichmondVirginia23284USA
| | - Ross W. Whetten
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Carol Loopstra
- Department of Ecology and Conservation BiologyTexas A&M UniversityCollege StationTexas77843USA
| | - Jason Holliday
- Department of Forest Resources and Environmental ConservationVirginia Polytechnic Institute and State UniversityBlacksburgVirginia24061USA
| | - Mihir Mandal
- Department of BiologyClaflin UniversityOrangeburgSouth Carolina29115USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Fikret Isik
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNorth Carolina27695USA
| |
Collapse
|
17
|
Bernhardsson C, Zan Y, Chen Z, Ingvarsson PK, Wu HX. Development of a highly efficient 50K single nucleotide polymorphism genotyping array for the large and complex genome of Norway spruce (Picea abies L. Karst) by whole genome resequencing and its transferability to other spruce species. Mol Ecol Resour 2020; 21:880-896. [PMID: 33179386 PMCID: PMC7984398 DOI: 10.1111/1755-0998.13292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
Norway spruce (Picea abies L. Karst) is one of the most important forest tree species with significant economic and ecological impact in Europe. For decades, genomic and genetic studies on Norway spruce have been challenging due to the large and repetitive genome (19.6 Gb with more than 70% being repetitive). To accelerate genomic studies, including population genetics, genome‐wide association studies (GWAS) and genomic selection (GS), in Norway spruce and related species, we here report on the design and performance of a 50K single nucleotide polymorphism (SNP) genotyping array for Norway spruce. The array is developed based on whole genome resequencing (WGS), making it the first WGS‐based SNP array in any conifer species so far. After identifying SNPs using genome resequencing data from 29 trees collected in northern Europe, we adopted a two‐step approach to design the array. First, we built a 450K screening array and used this to genotype a population of 480 trees sampled from both natural and breeding populations across the Norway spruce distribution range. These samples were then used to select high‐confidence probes that were put on the final 50K array. The SNPs selected are distributed over 45,552 scaffolds from the P. abies version 1.0 genome assembly and target 19,954 unique gene models with an even coverage of the 12 linkage groups in Norway spruce. We show that the array has a 99.5% probe specificity, >98% Mendelian allelic inheritance concordance, an average sample call rate of 96.30% and an SNP call rate of 98.90% in family trios and haploid tissues. We also observed that 23,797 probes (50%) could be identified with high confidence in three other spruce species (white spruce [Picea glauca], black spruce [P. mariana] and Sitka spruce [P. sitchensis]). The high‐quality genotyping array will be a valuable resource for genetic and genomic studies in Norway spruce as well as in other conifer species of the same genus.
Collapse
Affiliation(s)
- Carolina Bernhardsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Zhiqiang Chen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden.,Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Black Mountain Laboratory, CSIRO National Research Collection Australia, Canberra, ACT, Australia
| |
Collapse
|
18
|
Silva PIT, Silva-Junior OB, Resende LV, Sousa VA, Aguiar AV, Grattapaglia D. A 3K Axiom SNP array from a transcriptome-wide SNP resource sheds new light on the genetic diversity and structure of the iconic subtropical conifer tree Araucaria angustifolia (Bert.) Kuntze. PLoS One 2020; 15:e0230404. [PMID: 32866150 PMCID: PMC7458329 DOI: 10.1371/journal.pone.0230404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022] Open
Abstract
High-throughput SNP genotyping has become a precondition to move to higher precision and wider genome coverage genetic analysis of natural and breeding populations of non-model species. We developed a 44,318 annotated SNP catalog for Araucaria angustifolia, a grandiose subtropical conifer tree, one of the only two native Brazilian gymnosperms, critically endangered due to its valuable wood and seeds. Following transcriptome assembly and annotation, SNPs were discovered from RNA-seq and pooled RAD-seq data. From the SNP catalog, an Axiom® SNP array with 3,038 validated SNPs was developed and used to provide a comprehensive look at the genetic diversity and structure of 15 populations across the natural range of the species. RNA-seq was a far superior source of SNPs when compared to RAD-seq in terms of conversion rate to polymorphic markers on the array, likely due to the more efficient complexity reduction of the huge conifer genome. By matching microsatellite and SNP data on the same set of A. angustifolia individuals, we show that SNPs reflect more precisely the actual genome-wide patterns of genetic diversity and structure, challenging previous microsatellite-based assessments. Moreover, SNPs corroborated the known major north-south genetic cline, but allowed a more accurate attribution to regional versus among-population differentiation, indicating the potential to select ancestry-informative markers. The availability of a public, user-friendly 3K SNP array for A. angustifolia and a catalog of 44,318 SNPs predicted to provide ~29,000 informative SNPs across ~20,000 loci across the genome, will allow tackling still unsettled questions on its evolutionary history, toward a more comprehensive picture of the origin, past dynamics and future trend of the species' genetic resources. Additionally, but not less importantly, the SNP array described, unlocks the potential to adopt genomic prediction methods to accelerate the still very timid efforts of systematic tree breeding of A. angustifolia.
Collapse
Affiliation(s)
- Pedro Italo T. Silva
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, DF, Brasilia, Brazil
- University of Brasília, Cell Biology Department, Campus Universitário, DF, Brasília, Brazil
| | - Orzenil B. Silva-Junior
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, DF, Brasilia, Brazil
| | - Lucileide V. Resende
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, DF, Brasilia, Brazil
| | - Valderes A. Sousa
- Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA Florestas, PR, Colombo, Brazil
| | - Ananda V. Aguiar
- Empresa Brasileira de Pesquisa Agropecuária–EMBRAPA Florestas, PR, Colombo, Brazil
| | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, DF, Brasilia, Brazil
- University of Brasília, Cell Biology Department, Campus Universitário, DF, Brasília, Brazil
- Graduate Program in Genomic Sciences, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
19
|
SNP Genotyping with Target Amplicon Sequencing Using a Multiplexed Primer Panel and Its Application to Genomic Prediction in Japanese Cedar, Cryptomeria japonica (L.f.) D.Don. FORESTS 2020. [DOI: 10.3390/f11090898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Along with progress in sequencing technology and accumulating knowledge of genome and gene sequences, molecular breeding techniques have been developed for predicting the genetic potential of individual genotypes and for selecting superior individuals. For Japanese cedar (Cryptomeria japonica (L.f.) D.Don), which is the most common coniferous species in Japanese forestry, we constructed a custom primer panel for target amplicon sequencing in order to simultaneously determine 3034 informative single nucleotide polymorphisms (SNPs). We performed primary evaluation of the custom primer panel with actual sequencing and in silico PCR. Genotyped SNPs had a distribution over almost the entire region of the C. japonica linkage map and verified the high reproducibility of genotype calls compared to SNPs obtained by genotyping arrays. Genotyping was performed for 576 individuals of the F1 population, and genomic prediction models were constructed for growth and wood property-related traits using the genotypes. Amplicon sequencing with the custom primer panel enables efficient obtaining genotype data in order to perform genomic prediction, manage clones, and advance forest tree breeding.
Collapse
|
20
|
Perry A, Wachowiak W, Downing A, Talbot R, Cavers S. Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Mol Ecol Resour 2020; 20:1697-1705. [PMID: 32633888 DOI: 10.1111/1755-0998.13223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Pines are some of the most ecologically and economically important tree species in the world, and many have enormous natural distributions or have been extensively planted. However, a lack of rapid genotyping capability is hampering progress in understanding the molecular basis of genetic variation in these species. Here, we deliver an efficient tool for genotyping thousands of single nucleotide polymorphism (SNP) markers across the genome that can be applied to genetic studies in pines. Polymorphisms from resequenced candidate genes and transcriptome sequences of P. sylvestris, P. mugo, P. uncinata, P. uliginosa and P. radiata were used to design a 49,829 SNP array (Axiom_PineGAP, Thermo Fisher). Over a third (34.68%) of the unigenes identified from the P. sylvestris transcriptome were represented on the array, which was used to screen samples of four pine species. The conversion rate for the array on all samples was 42% (N = 20,795 SNPs) and was similar for SNPs sourced from resequenced candidate gene and transcriptome sequences. The broad representation of gene ontology terms by unigenes containing converted SNPs reflected their coverage across the full transcriptome. Over a quarter of successfully converted SNPs were polymorphic among all species, and the data were successful in discriminating among the species and some individual populations. The SNP array provides a valuable new tool to advance genetic studies in these species and demonstrates the effectiveness of the technology for rapid genotyping in species with large and complex genomes.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| | - Witold Wachowiak
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alison Downing
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| |
Collapse
|