1
|
Zhang T, Zheng Y, Zhang F, Wang X, Du J, Wang X. MiR-199a-5p inhibits dermal papilla cells proliferation by regulating VEGFA expression in cashmere goat. Gene 2024; 893:147901. [PMID: 37839765 DOI: 10.1016/j.gene.2023.147901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Hair follicles undergo a renewal cycle consisting of anagen, telogen and catagen stages. MicroRNA (miRNA) plays a crucial role in this process. Recent studies have shown that miR-199a-5p, which exhibits differential expression between anagen and telogen stages in the hair follicle cycle of cashmere goats, inhibits the proliferation of various cell types, including skin keratinocytes and vascular endothelial cells. Since the proliferation of dermal papilla cells (DPCs) is a key factor in the hair follicle cycle, we utilized DPCs to investigate the function and molecular mechanism of miR-199a-5p in cashmere goats. Our functional analysis revealed that miR-199a-5p significantly suppressed cell viability and proliferation of DPCs, as evidenced by MTT, EdU and RT-qPCR methods. Subsequently, we investigated the regulatory mechanism of miR-199a-5p. Through bioinformatics analysis, a potential correlation between lnc102173187 and miR-199a-5p was predicted. However, the dual luciferase reporter assay revealed no interaction between lnc102173187 and miR-199a-5p. Further investigation using dual-luciferase reporter assay, RT-qPCR, and western blot results confirmed that VEGFA was the target gene of miR-199a-5p from. The functional experiment demonstrated that VEGFA promoted the proliferation of DPCs, and antagonized the inhibitory effect of miR-199a-5p on DPCs proliferation. Taken together, this research revealed the role of miR-199a-5p and VEGFA on the proliferation of dermal papilla cells in cashmere goat, which would enrich the theoretical basis for hair follicle development, and could also serve as a marker cofactor to play an important reference and guidance role in the breeding, improvement and optimization of cashmere goat breeds.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yujie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinmiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiamian Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Qi WH, Liu T, Zheng CL, Zhao Q, Zhou N, Zhao GJ. Identification of Potential miRNA-mRNA Regulatory Network Associated with Growth and Development of Hair Follicles in Forest Musk Deer. Animals (Basel) 2023; 13:3869. [PMID: 38136906 PMCID: PMC10740511 DOI: 10.3390/ani13243869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Ting Liu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Cheng-Li Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 611830, China;
| | - Qi Zhao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Nong Zhou
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (W.-H.Q.); (T.L.); (Q.Z.)
| | - Gui-Jun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| |
Collapse
|
3
|
Wang M, Dai H, Sheng S, Liu Y, Zhang S, Bai W, Xue H. Discovery and Functional Analysis of Secondary Hair Follicle miRNAs during Annual Cashmere Growth. Int J Mol Sci 2023; 24:ijms24021063. [PMID: 36674578 PMCID: PMC9864137 DOI: 10.3390/ijms24021063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Secondary hair follicles (SHFs) produce the thermoregulatory cashmere of goats. MicroRNAs (miRNAs) play indispensable roles in hair follicle formation and growth. However, most studies examining miRNAs related to cashmere have been performed on goat skin. It remains unclear which miRNAs are highly expressed in SHFs or how miRNAs affect cashmere growth. In the present study, we isolated the SHFs under a dissecting microscope and analyzed the miRNA signatures during annual cashmere growth. Small-RNA sequencing followed by genome-wide expression analysis revealed that early anagen is a crucial phase for miRNA regulation of the cashmere growth, as revealed by two predominant groups of miRNAs. Although they exhibited opposite expression patterns, both groups demonstrated sharp changes of expression when in transit from early anagen to mid-anagen. In addition, we identified 96 miRNA signatures that were differentially expressed between different phases among 376 miRNAs. Functional analysis of the predicted target genes of highly expressed or differentially expressed miRNAs indicated that these miRNAs were involved in signal pathways associated with SHF development, regeneration, and regression. Furthermore, miR-143-3p was preferentially expressed in SHFs and Itga6 was identified as one of targets. The dual-luciferase and in situ hybridization assay demonstrated that miR-143-3p directly repressed the expression of Itga6, suggesting a possible novel role for miR-143-3p in cashmere growth.
Collapse
|
4
|
Comparative Analysis of mRNA and miRNA Expression between Dermal Papilla Cells and Hair Matrix Cells of Hair Follicles in Yak. Cells 2022; 11:cells11243985. [PMID: 36552749 PMCID: PMC9776824 DOI: 10.3390/cells11243985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction between the dermal papilla cells (DPCs) and epidermal hair matrix cells (HMCs) of hair follicles (HFs) is crucial for the growth and development of HFs, but the molecular mechanism is complex and remains unclear. MicroRNAs (miRNAs) are the key signaling molecules for cellular communication. In this study, the DPCs and HMCs of yak were isolated and cultured, and the differentially expressed mRNA and miRNA were characterized to analyze the molecular basis of the interaction between DPCs and HMCs during hair follicle (HF) development in yak. The mRNA differential expression and functional enrichment analysis revealed that there were significant differences between DPCs and HMCs, and they showed the molecular functional characteristics of dermal cells and epidermal cells, respectively. Multiple KEGG pathways related to HF development were enriched in the highly expressed genes in DPCs, while the pathways associated with microbiota and immunity were significantly enriched in the highly expressed genes in HMCs. By combining analysis with our previous 10× genomics single-cell transcriptome data, 39 marker genes of DPCs of yak were identified. A total of 123 relatively specifically expressed miRNAs were screened; among these, the miRNAs associated with HF development such as miR-143, miR-214, miR-125b, miR-31, and miR-200 were presented. In conclusion, the large changes in yak DPCs and HMCs for both mRNA and miRNA expression were revealed, and numerous specifically expressed mRNAs and miRNAs in DPCs or HMCs were identified, which may contribute to the interaction and cellular communication between DPCs and HMCs during HF development in yak.
Collapse
|
5
|
Comprehensive Transcriptome Analysis of Hair Follicle Morphogenesis Reveals That lncRNA-H19 Promotes Dermal Papilla Cell Proliferation through the Chi-miR-214-3p/β-Catenin Axis in Cashmere Goats. Int J Mol Sci 2022; 23:ijms231710006. [PMID: 36077403 PMCID: PMC9456307 DOI: 10.3390/ijms231710006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Cashmere is initiated and develops in the fetal stages and the number and density of secondary hair follicles (SHFs) determine cashmere production and quality. Growing evidence indicates that both microRNA (miRNA) and long non-coding RNA (lncRNA) play an indispensable role in hair follicle (HF) growth and development. However, little is known about miRNAs, lncRNAs, and their functions as well as their interactions during cashmere initiation and development. Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we identified 10,485 lncRNAs, 40,639 mRNAs, and 605 miRNAs in cashmere goat skin during HF induction, organogenesis, and cytodifferentiation stages. Among them, 521 lncRNAs, 5976 genes, and 204 miRNAs were differentially expressed (DE). KEGG analysis of DE genes indicated that ECM–receptor interaction and biosynthesis of amino acids were crucial for HF development. Notch, TGF-beta, and Wnt signaling pathways were also identified, which are conventional pathways associated with HF growth and development. Then, the ceRNA regulatory network was constructed, and the impact of lncRNA H19 was investigated in dermal papilla (DP) cells. The MTT, CCK-8, and EdU assays showed that the viability and proliferation of DP cells were promoted by H19, and mechanistic studies suggested that H19 performed its function through the chi-miR-214-3p/β-catenin axis. The present study created a resource for lncRNA, miRNA, and mRNA studies in cashmere morphogenesis. It could contribute to a better understanding of the molecular mechanism of ncRNAs involved in the regulation of HF growth and development.
Collapse
|
6
|
Shang F, Ma R, Rong Y, Pan J, Wang M, Niu S, Qi Y, Li Y, Wang Z, Lv Q, Wang R, Su R, Liu Z, Zhao Y, Wang Z, Li J, Zhang Y. Construction and functional analysis of ceRNA regulatory network related to the development of secondary hair follicles in Inner Mongolia cashmere goats. Front Vet Sci 2022; 9:959952. [PMID: 36090177 PMCID: PMC9453165 DOI: 10.3389/fvets.2022.959952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cashmere goat hair follicles are divided into primary hair follicles and secondary hair follicles. The primary hair follicles produce coarse hair, and the secondary hair follicles produce cashmere. The development of hair follicles is affected by a variety of signaling molecules and pathways. Studies have shown that non-coding RNAs are widely involved in the development of hair follicles of the goat, including small RNAs (miRNAs), long non-coding RNAs (lncRNA), and circular RNAs (circRNAs). In recent years, circRNAs, as a new type of circular closed non-coding RNAs, have attracted great attention due to their high stability. However, its regulatory effect on cashmere goat hair follicles mainly focuses on the periodic regulation of secondary hair follicles, and there is no report on the development of cashmere goat hair follicles during the fetal period. Therefore, this study was based on the circRNA, miRNA, and mRNA expression profiles obtained by whole-transcriptional sequencing of the skin tissue of the Inner Mongolia cashmere goats in the fetal period (days 45, 55, 65, and 75) and screening out the morphological changes of hair follicles at different periods. A total of 113 circRNAs related to the development of secondary hair follicles were present. According to the principle of the ceRNA regulatory network, a ceRNA regulatory network composed of 13 circRNAs, 21 miRNAs, and 110 mRNAs related to the development of secondary hair follicles was constructed. Then, qRT-PCR and Sanger sequencing identified circRNA2034, circRNA5712, circRNA888, and circRNA9127 were circRNAs. Next, the dual-luciferase reporter gene verified the targeting relationship of circRNA5712-miR-27b-3p-Dll4. In conclusion, this study constructed a ceRNA regulatory network for the development of cashmere goat secondary hair follicles, laying a foundation for the analysis of circRNAs regulating the morphogenesis and development of cashmere goat secondary hair follicles through the ceRNA mechanism.
Collapse
Affiliation(s)
- Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuran Niu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yanjun Zhang
| |
Collapse
|
7
|
Shang F, Wang Y, Ma R, Rong Y, Wang M, Wu Z, Hai E, Pan J, Liang L, Wang Z, Wang R, Su R, Liu Z, Zhao Y, Wang Z, Li J, Zhang Y. Screening of microRNA and mRNA related to secondary hair follicle morphogenesis and development and functional analysis in cashmere goats. Funct Integr Genomics 2022; 22:835-848. [PMID: 35488101 PMCID: PMC9550687 DOI: 10.1007/s10142-022-00842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
microRNA (miRNA) is a type of endogenous short-chain non-coding RNA with regulatory function found in eukaryotes, which is involved in the regulation of a variety of cellular and biological processes. However, the research on the development of cashmere goat secondary hair follicles is still relatively scarce. In this study, small RNA libraries and mRNA libraries of 45 days, 55 days, 65 days, and 75 days of fetal skin of cashmere goats were constructed, and the constructed libraries were sequenced using Illumina Hiseq4000, and the expression profiles of miRNA and mRNA in cashmere goat fetal skin were obtained. The differentially expressed miRNAs and mRNAs in six control groups were identified and the qRT-PCR experiment shows that the sequencing results are accurate. Sixty-six miRNAs related to secondary hair follicle development were screened, and used TargetScan and miRanda to predict 33 highly expressed miRNA target genes. At the same time, 664 mRNAs related to the development of secondary hair follicles were screened, and GO enrichment and KEGG pathway analysis were performed. It was found that some miRNA target genes were consistent with the screening results of mRNAs related to secondary hair follicle development and were enriched in Notch signaling pathway, TGF-β signaling pathway. Therefore, miR-145-5p-DLL4, miR-27b-3p-DLL4, miR-30e-5p-DLL4, miR-193b-3p-TGF-β1, miR-181b-5p-NOTCH2, and miR-103-3p-NOTCH2 regulatory network related to the development of secondary hair follicles were constructed and the results of dual-luciferase reporter gene assay indicated that there is a targeted relationship between chi-miR-30e-5p and DLL4, which will provide a basis for molecular mechanism of miRNA-mRNA in the development of the hair follicles in cashmere goats.
Collapse
Affiliation(s)
- Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, Inner Mongolia, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, China. .,Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
8
|
Shen H, Li C, He M, Huang Y, Wang J, Luo J, Wang M, Yue B, Zhang X. Whole blood transcriptome profiling identifies candidate genes associated with alopecia in male giant pandas (Ailuropoda melanoleuca). BMC Genomics 2022; 23:297. [PMID: 35413801 PMCID: PMC9004003 DOI: 10.1186/s12864-022-08501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened species endemic to China. Alopecia, characterized by thinning and broken hair, mostly occurs in breeding males. Alopecia significantly affects the health and public image of the giant panda and the cause of alopecia is unclear. Results Here, we researched gene expression profiles of four alopecia giant pandas and seven healthy giant pandas. All pandas were approximately ten years old and their blood samples collected during the breeding season. A total of 458 up-regulated DEGs and 211 down-regulated DEGs were identified. KEGG pathway enrichment identified that upregulated genes were enriched in the Notch signaling pathway and downregulated genes were enriched in ribosome, oxidative phosphorylation, and thermogenesis pathways. We obtained 28 hair growth-related DEGs, and identified three hub genes NOTCH1, SMAD3, and TGFB1 in PPI analysis. Five hair growth-related signaling pathways were identified with abnormal expression, these were Notch, Wnt, TGF-β, Mapk, and PI3K-Akt. The overexpression of NOTCH1 delays inner root sheath differentiation and results in hair shaft abnormalities. The delayed hair regression was associated with a significant decrease in the expression levels of TGFB1. Conclusions Our data confirmed the abnormal expression of several hair-related genes and pathways and identified alopecia candidate genes in the giant panda. Results of this study provide theoretical basis for the establishment of prevention and treatment strategies for giant pandas with alopecia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08501-z.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China. .,No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
9
|
Liu Y, Ding Y, Liu Z, Chen Q, Li X, Xue X, Pu Y, Ma Y, Zhao Q. Integration Analysis of Transcriptome and Proteome Reveal the Mechanisms of Goat Wool Bending. Front Cell Dev Biol 2022; 10:836913. [PMID: 35433706 PMCID: PMC9011194 DOI: 10.3389/fcell.2022.836913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Zhongwei, China
| | - Qian Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xianglan Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| |
Collapse
|
10
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
11
|
Gao WZ, Xue HL, Yang JC. Proteomics analysis of the secondary hair follicle cycle in Liaoning cashmere goat. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|