1
|
Wang P, Zhu L, Li Z, Cheng M, Chen X, Wang A, Wang C, Zhang X. Genome-Wide Identification of the U-Box E3 Ubiquitin Ligase Gene Family in Cabbage ( Brassica oleracea var. capitata) and Its Expression Analysis in Response to Cold Stress and Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1437. [PMID: 37050063 PMCID: PMC10097260 DOI: 10.3390/plants12071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) play an important role in growth, development, and stress responses in many species. However, the characteristics of U-box E3 ubiquitin ligase genes in cabbage (Brassica oleracea var. capitata) are still unclear. Here, we carry out the genome-wide analysis of U-box E3 ubiquitin ligase genes in cabbage and identify 65 Brassica oleracea var. capitata U-box E3 ubiquitin ligase (BoPUB) genes in the cabbage genome. Phylogenetic analysis indicates that all 65 BoPUB genes are grouped into six subfamilies, whose members are relatively conserved in the protein domain and exon-intron structure. Chromosomal localization and synteny analyses show that segmental and tandem duplication events contribute to the expansion of the U-box E3 ubiquitin ligase gene family in cabbage. Protein interaction prediction presents that heterodimerization may occur in BoPUB proteins. In silico promoter analysis and spatio-temporal expression profiling of BoPUB genes reveal their involvement in light response, phytohormone response, and growth and development. Furthermore, we find that BoPUB genes participate in the biosynthesis of cuticular wax and in response to cold stress and pathogenic attack. Our findings provide a deep insight into the U-box E3 ubiquitin ligase gene family in cabbage and lay a foundation for the further functional analysis of BoPUB genes in different biological processes.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Zea mays L.) silks infected by multiple fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:985396. [PMID: 36388593 PMCID: PMC9647128 DOI: 10.3389/fpls.2022.985396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays L.) is the third most popular Poaceae crop after wheat and rice and used in feed and pharmaceutical sectors. The maize silk contains bioactive components explored by traditional Chinese herbal medicine for various pharmacological activities. However, Fusarium graminearum, Fusarium verticillioides, Trichoderma atroviride, and Ustilago maydis can infect the maize, produce mycotoxins, hamper the quantity and quality of silk production, and further harm the primary consumer's health. However, the defense mechanism is not fully understood in multiple fungal infections in the silk of Z. mays. In this study, we applied bioinformatics approaches to use the publicly available transcriptome data of Z. mays silk affected by multiple fungal flora to identify core genes involved in combatting disease response. Differentially expressed genes (DEGs) were identified among intra- and inter-transcriptome data sets of control versus infected Z. mays silks. Upon further comparison between up- and downregulated genes within the control of datasets, 4,519 upregulated and 5,125 downregulated genes were found. The DEGs have been compared with genes in the modules of weighted gene co-expression network analysis to relevant specific traits towards identifying core genes. The expression pattern of transcription factors, carbohydrate-active enzymes (CAZyme), and resistance genes was analyzed. The present investigation is supportive of our findings that the gene ontology, immunity stimulus, and resistance genes are upregulated, but physical and metabolic processes such as cell wall organizations and pectin synthesis were downregulated respectively. Our results are indicative that terpene synthase TPS6 and TPS11 are involved in the defense mechanism against fungal infections in maize silk.
Collapse
Affiliation(s)
- Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P. T. V. Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
3
|
Comparative Transcriptome Analyses of Different Rheum officinale Tissues Reveal Differentially Expressed Genes Associated with Anthraquinone, Catechin, and Gallic Acid Biosynthesis. Genes (Basel) 2022; 13:genes13091592. [PMID: 36140760 PMCID: PMC9498579 DOI: 10.3390/genes13091592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Rheum officinale Baill. is an important traditional Chinese medicinal herb, its dried roots and rhizomes being widely utilized to cure diverse diseases. However, previous studies mainly focused on the active compounds and their pharmacological effects, and the molecular mechanism underlying the biosynthesis of these ingredients in R. officinale is still elusive. Here, we performed comparative transcriptome analyses to elucidate the differentially expressed genes (DEGs) in the root, stem, and leaf of R. officinale. A total of 236,031 unigenes with N50 of 769 bp was generated, 136,329 (57.76%) of which were annotated. A total of 5884 DEGs was identified after the comparative analyses of different tissues; 175 and 126 key enzyme genes with tissue-specific expression were found in the anthraquinone, catechin/gallic acid biosynthetic pathway, respectively, and some of these key enzyme genes were verified by qRT-PCR. The phylogeny of the PKS III family in Polygonaceae indicated that probably only PL_741 PKSIII1, PL_11549 PKSIII5, and PL_101745 PKSIII6 encoded PKSIII in the polyketide pathway. These results will shed light on the molecular basis of the tissue-specific accumulation and regulation of secondary metabolites in R. officinale, and lay a foundation for the future genetic diversity, molecular assisted breeding, and germplasm resource improvement of this essential medicinal plant.
Collapse
|
4
|
Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks. Genes (Basel) 2022; 13:genes13060954. [PMID: 35741716 PMCID: PMC9222338 DOI: 10.3390/genes13060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.
Collapse
|