1
|
Miryeganeh M. Epigenetic Mechanisms Driving Adaptation in Tropical and Subtropical Plants: Insights and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39776407 DOI: 10.1111/pce.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems. By integrating molecular biology with plant ecology, this synthesis highlights how tropical plants provide valuable models for understanding resilience strategies applicable across broader plant taxa. This review underscores the potential of epigenetic mechanisms to inform conservation strategies and agricultural innovations aimed at bolstering plant resilience in the face of climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Song X, Wang H, Wang Y, Zeng Q, Zheng X. Metabolomics combined with physiology and transcriptomics reveal how Nicotiana tabacum leaves respond to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108464. [PMID: 38442629 DOI: 10.1016/j.plaphy.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Low temperature-induced cold stress is a major threat to plant growth, development and distribution. Unraveling the responses of temperature-sensitive crops to cold stress and the mechanisms of cold acclimation are critical for food demand. In this study, combined physiological, transcriptomic, and metabolomic analyses were conducted on Nicotiana tabacum suffering short-term 4 °C cold stress. Our results showed that cold stress destroyed cellular membrane stability, decreased the chlorophyll (Chl) and carotenoid contents, and closed stomata, resulting in lipid peroxidation and photosynthesis restriction. Chl fluorescence measurements revealed that primary photochemistry, photoelectrochemical quenching and photosynthetic electron transport in Nicotiana tabacum leaves were seriously suppressed upon exposer to cold stress. Enzymatic and nonenzymatic antioxidants, including superoxide dismutase, catalase, peroxidase, reduced glutathione, proline, and soluble sugar, were all profoundly increased to trigger the cold acclimation defense against oxidative damage. A total of 178 metabolites and 16,204 genes were differentially expressed in cold-stressed Nicotiana tabacum leaves. MEturquoise and MEblue modules identified by WGCNA were highly correlated with physiological indices, and the corresponding hub genes were significantly enriched in pathways related to photosynthesis - antenna proteins and flavonoid biosynthesis. Untargeted metabolomic analysis identified specific metabolites, including sucrose, phenylalanine, glutamine, glutamate, and proline, that enhance plant cold acclimation. Combined transcriptomics and metabolomic analysis highlight the vital roles of carbohydrate and amino acid metabolism in enhancing the cold tolerance of Nicotiana tabacum. Our comprehensive investigation provides novel insights for efforts to alleviate low temperature-induced oxidative damage to Nicotiana tabacum plants and proposes a breeding target for cold stress-tolerant cultivars.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hui Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Yujie Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| | - Xuebo Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, 266101, China.
| |
Collapse
|
3
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101573. [PMID: 36295009 PMCID: PMC9604649 DOI: 10.3390/life12101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Simple Summary Yellow kiwifruit (Actinidia chinensis Planch.) is popular in the market. However, it is highly susceptible to severe weather, including as low temperatures and frost, which may affect its production in the coming year. The cold-resistant mechanism of yellow kiwifruit associated with gene regulation is poorly investigated. To better understand cold-adaptive mechanisms, we grew plants under low-temperature conditions, which was followed by transcriptome analysis to discern the genes that play an active role in growth under low temperatures. The findings and dataset obtained in this study advance our knowledge of the cold-adaptive genes in regulatory networks and helps us to understand the cold-tolerance mechanisms in the tetraploid yellow kiwifruit. Abstract The cold-resistant mechanism of yellow kiwifruit associated with gene regulation is poorly investigated. In this study, to provide insight into the causes of differences in low-temperature tolerance and to better understand cold-adaptive mechanisms, we treated yellow tetraploid kiwifruit ‘SWFU03’ tissue culture plantlets at low temperatures, used these plantlets for transcriptome analysis, and validated the expression levels of ten selected genes by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. A number of 1630 differentially expressed genes (DEGs) were identified, of which 619 pathway genes were up-regulated, and 1011 were down-regulated in the cold treatment group. The DEGs enriched in the cold tolerance-related pathways mainly included the plant hormone signal transduction and the starch and sucrose metabolism pathway. RT-qPCR analysis confirmed the expression levels of eight up-regulated genes in these pathways in the cold-resistant mutants. In this study, cold tolerance-related pathways (the plant hormone signal transduction and starch and sucrose metabolism pathway) and genes, e.g., CEY00_Acc03316 (abscisic acid receptor PYL), CEY00_Acc13130 (bZIP transcription factor), CEY00_Acc33627 (TIFY protein), CEY00_Acc26744 (alpha-trehalose-phosphate synthase), CEY00_Acc28966 (beta-amylase), CEY00_Acc16756 (trehalose phosphatase), and CEY00_Acc08918 (beta-amylase 4) were found.
Collapse
|
5
|
Wang J, Cheng ZY, Dong YW. Demographic, physiological, and genetic factors linked to the poleward range expansion of the snail Nerita yoldii along the shoreline of China. Mol Ecol 2022; 31:4510-4526. [PMID: 35822322 DOI: 10.1111/mec.16610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022]
Abstract
Species range shift is one of the most significant consequences of climate change in the Anthropocene. A comprehensive study, including demographic, physiological, and genetic factors linked to poleward range expansion, is crucial for understanding how the expanding population occupies the new habitat. In the present study, we investigated the demographic, physiological, and genetic features of the intertidal gastropod Nerita yoldii, which has extended its northern limit by ~200 km over the former biogeographic break of the Yangtze River Estuary during recent decades. The neutral SNPs data showed that the new marginal populations formed a distinct cluster established by a few founders. Demographic modelling analysis revealed that the new marginal populations experienced a strong genetic bottleneck followed by recent demographic expansion. Successful expansion that overcame the founder effect might be attributed to its high capacity of rapid population growth and multiple introductions. According to the non-neutral SNPs under diversifying selection, there were high levels of heterozygosity in the new marginal populations, which might be beneficial for adapting to the novel thermal conditions. The common garden experiment showed that the new marginal populations have evolved divergent transcriptomic and physiological responses to heat stress, allowing them to occupy and survive in the novel environment. Lower transcriptional plasticity was observed in the new marginal populations. These results suggest a new biogeographic pattern of N. yoldii has formed with the occurrence of demographic, physiologic, and genetic changes, and emphasize the roles of adaptation of marginal populations during range expansion.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zhi-Yuan Cheng
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, PR China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
6
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
7
|
Ruan X, Wang Z, Su Y, Wang T. Population Genomics Reveals Gene Flow and Adaptive Signature in Invasive Weed Mikania micrantha. Genes (Basel) 2021; 12:1279. [PMID: 34440453 PMCID: PMC8394975 DOI: 10.3390/genes12081279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
A long-standing and unresolved issue in invasion biology concerns the rapid adaptation of invaders to nonindigenous environments. Mikania micrantha is a notorious invasive weed that causes substantial economic losses and negative ecological consequences in southern China. However, the contributions of gene flow, environmental variables, and functional genes, all generally recognized as important factors driving invasive success, to its successful invasion of southern China are not fully understood. Here, we utilized a genotyping-by-sequencing approach to sequence 306 M. micrantha individuals from 21 invasive populations. Based on the obtained genome-wide single nucleotide polymorphism (SNP) data, we observed that all the populations possessed similar high levels of genetic diversity that were not constrained by longitude and latitude. Mikania micrantha was introduced multiple times and subsequently experienced rapid-range expansion with recurrent high gene flow. Using FST outliers, a latent factor mixed model, and the Bayesian method, we identified 38 outlier SNPs associated with environmental variables. The analysis of these outlier SNPs revealed that soil composition, temperature, precipitation, and ecological variables were important determinants affecting the invasive adaptation of M. micrantha. Candidate genes with outlier signatures were related to abiotic stress response. Gene family clustering analysis revealed 683 gene families unique to M. micrantha which may have significant implications for the growth, metabolism, and defense responses of M. micrantha. Forty-one genes showing significant positive selection signatures were identified. These genes mainly function in binding, DNA replication and repair, signature transduction, transcription, and cellular components. Collectively, these findings highlight the contribution of gene flow to the invasion and spread of M. micrantha and indicate the roles of adaptive loci and functional genes in invasive adaptation.
Collapse
Affiliation(s)
- Xiaoxian Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510641, China
| |
Collapse
|
8
|
Li Y, Shi LC, Cushman SA. Transcriptomic responses and physiological changes to cold stress among natural populations provide insights into local adaptation of weeping forsythia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:94-103. [PMID: 34034164 DOI: 10.1016/j.plaphy.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/13/2021] [Indexed: 05/15/2023]
Abstract
Genetic mechanisms of species local adaptation are an emerging topic of great interest in evolutionary biology and molecular ecology. In this study, we compared the changes of physiological and phenotypic indexes and gene expression of four weeping forsythia populations under cold stress through a common garden experiment. Physiological and phenotypic results showed that there were differences in cold tolerance among populations. cold tolerance of high the latitude population (HBWZ) was the strongest, followed by the middle latitude population (SXWL), while the low latitude populations (SXHM) and (SXLJ) expressed the weakest cold tolerance. We identified significant differences in gene expression of cold tolerance related pathways and ontologies, including genes of oxylipin and isoquinoline alkaloid biosynthetic process, galactose, tyrosine and unsaturated fatty acids metabolism, among these populations under the same experimental temperature treatments. Even under the same degree of stress, there were notable differences in gene expression among natural populations. In this study, we present a working model of weeping forsythia populations which evolved in the context of different intensities of cold stress. Our study provides new insights for comprehending the genetic mechanisms of local adaptation for non-model species.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China.
| | - Long-Chen Shi
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- U.S. Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, AZ, USA
| |
Collapse
|