1
|
Yang H, Li YL, Xing TF, Liu JX. Characterization of the sex determining region and development of a molecular sex identification method in a Salangid fish. BMC Genomics 2024; 25:1120. [PMID: 39567903 PMCID: PMC11580623 DOI: 10.1186/s12864-024-11047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The short-snout icefish, Neosalanx brevirostris, a member of the Salangidae family, is an economically important fishery species in China. Understanding the mechanisms underlying sex determination in this species has crucial implications for conservation, ecology and evolution. Meanwhile, there is a shortage of rapid and cost-effective genetic methods for sex identification, which poses challenges in identifying the sex of immature individuals in sex determination mechanism studies and aquaculture breeding applications. RESULTS Based on whole genome resequencing data, sex-specific loci and regions were found to be concentrated in a region on chromosome 2. All sex-specific loci exhibited excess heterozygosity in females and complete homozygosity in males. This sex determining region contains seven genes, including cytochrome P450 aromatase CYP19B, which is involved in steroidogenesis and is associated with 24 sex-specific loci and two W-deletions. A haploid female-specific sequence was identified as paralogous to a diploid sequence with a significant length difference, making it suitable for rapid and cost-effective genetic sex identification by traditional PCR and agarose gel electrophoresis, which were further validated in 24 females and 24 males with known phenotypic sexes. CONCLUSIONS Our results confirm that N. brevirostris exhibits a female heterogametic sex determination system (ZZ/ZW), with chromosome 2 identified as the putative sex chromosome containing a relatively small sex determining region (~ 48 Kb). The gene CYP19B is proposed as a candidate sex determining gene. Moreover, the development of PCR based method enables genetic sex identification at any developmental stage, thereby facilitating further studies on sex determination mechanisms and advancing aquaculture breeding applications for this species.
Collapse
Affiliation(s)
- Hao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Fu Y, Luo L, Wang S, Yu Y, Wang Y, Gao Z. Identification of sex-specific markers using genome re-sequencing in the blunt snout bream (Megalobrama amblycephala). BMC Genomics 2024; 25:963. [PMID: 39407110 PMCID: PMC11481317 DOI: 10.1186/s12864-024-10884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Collapse
Affiliation(s)
- Yuye Fu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifei Luo
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shilong Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
3
|
Fornaini NR, Černohorská H, do Vale Martins L, Knytl M. Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution. Genome Biol Evol 2024; 16:evae028. [PMID: 38340334 PMCID: PMC11079324 DOI: 10.1093/gbe/evae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.
Collapse
Affiliation(s)
- Nicola R Fornaini
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Halina Černohorská
- Genetics and Reproductive Biotechnologies, CEITEC—Veterinary Research Institute, Brno 62100, Czech Republic
| | | | - Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
4
|
Schartl M, Georges A, Marshall Graves JA. Polygenic sex determination in vertebrates - is there any such thing? Trends Genet 2023; 39:242-250. [PMID: 36669949 PMCID: PMC10148267 DOI: 10.1016/j.tig.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Genetic sex determination (SD) in most vertebrates is controlled by a single master sex gene, which ensures a 1:1 sex ratio. However, more complex systems abound, and several have been ascribed to polygenic SD (PSD), in which many genes at different loci interact to produce the sexual phenotype. Here we examine claims for PSD in vertebrates, finding that most constitute transient states during sex chromosome turnover, or aberrant systems in species hybrids. To avoid confusion about terminology, we propose a consistent nomenclature for genetic SD systems.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Australia
| | | |
Collapse
|
5
|
Mishina T, Nomoto K, Machida Y, Hariu T, Watanabe K. Origin of scarlet gynogenetic triploid Carassius fish: Implications for conservation of the sexual-gynogenetic complex. PLoS One 2022; 17:e0276390. [PMID: 36264937 PMCID: PMC9584449 DOI: 10.1371/journal.pone.0276390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Conservation of sperm-dependent asexual (gynogenetic) species is challenging due to their complicated ecological dynamics, which requires the stable coexistence with their sperm-providing sexual relatives, who often share similar niches. A symbolic but vulnerable gynogenetic animal is the scarlet Carassius fish, or Hibuna, which is mainly found in Lake Harutori on Hokkaido, Japan. Although Hibuna in Lake Harutori has been protected as a symbol of the Natural Monument of Japan, it has recently suffered population decline. To establish an effective conservation strategy for Hibuna, we investigated its origin, reproductive mode, and genetic diversity, with reference to the surrounding wild populations, using nuclear microsatellites and mitochondrial gene sequences. Our genetic analyses revealed that the main ploidy of Hibuna was triploid or tetraploid, and it reproduces gynogenetically. However, no co-existing sexual diploid Carassius was detected among our samples, suggesting that the sexual diploids and the gynogenetic population including Hibuna would be at risk of co-extirpation. In addition, Hibuna showed high genetic/clonal diversity and most Hibuna had nonindigenous mitochondrial haplotypes that are mostly identical to those reported from goldfish. These results indicate that Hibuna most probably originated from hybridization between indigenous gynogenetic triploids and goldfish introduced about 100 years ago, involving rare sexual reproduction. This spontaneous long-term field experiment exemplifies the recently documented diversification process of gynogenetic Carassius via complex interploidy gene flow. Although the priority to be placed on the conservation of Hibuna is controversial, the maintenance of gynogenetic Carassius, including Hibuna, requires strategic conservation of sexual populations.
Collapse
Affiliation(s)
- Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- * E-mail:
| | | | | | - Tsutomu Hariu
- Kushiro Public University of Economics, Kushiro, Hokkaido, Japan
| | - Katsutoshi Watanabe
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
6
|
Lu M, Li Z, Zhu ZY, Peng F, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. Changes in Ploidy Drive Reproduction Transition and Genomic Diversity in a Polyploid Fish Complex. Mol Biol Evol 2022; 39:msac188. [PMID: 36056821 PMCID: PMC9486886 DOI: 10.1093/molbev/msac188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unisexual animals are commonly found in some polyploid species complexes, and most of these species have had a long evolutionary history. However, their method for avoiding genomic decay remains unclear. The polyploid Carassius complex naturally comprises the sexual amphidiploid C. auratus (crucian carp or goldfish) (AABB) and the gynogenetic amphitriploid C. gibelio (gibel carp) (AAABBB). Recently, we developed a fertile synthetic amphitetraploid (AAAABBBB) male from C. gibelio by incorporating a C. auratus genome. In this study, we generated novel amphitriploids (AAABBB) by backcrossing the amphitetraploid male with the amphidiploid C. auratus. Whole-genome resequencing revealed the genomic changes, including recombination and independent assortment between homologs of C. gibelio and C. auratus. The fertility, sex determination system, oocyte development, and fertilization behaviors of the novel amphitriploids were investigated. Approximately 80% of the novel amphitriploid females recovered the unisexual gynogenesis ability. Intriguingly, two types of primary oocyte (with and without homolog synapsis) were discovered, and their distinct development fates were observed. Type I oocytes entered apoptosis due to improper synaptonemal complex assembly and incomplete double-strand break repair, whereas subsequent type II oocytes bypassed meiosis through an alternative ameiotic pathway to develop into mature eggs. Moreover, gynogenesis was stabilized in their offspring, and a new array of diverse gynogenetic amphitriploid clones was produced. These revealed genomic changes and detailed cytological data provide comprehensive evidence that changes in ploidy drive unisexual and sexual reproduction transition, thereby resulting in genomic diversity and allowing C. gibelio avoid genomic decay.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wen M, Pan Q, Larson W, Eché C, Guiguen Y. Characterization of the sex determining region of channel catfish (Ictalurus punctatus) and development of a sex-genotyping test. Gene X 2022; 850:146933. [DOI: 10.1016/j.gene.2022.146933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
8
|
Knytl M, Forsythe A, Kalous L. A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. Int J Mol Sci 2022; 23:8095. [PMID: 35897665 PMCID: PMC9330404 DOI: 10.3390/ijms23158095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Adrian Forsythe
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden;
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16521 Prague, Czech Republic;
| |
Collapse
|
9
|
Kuhl H, Du K, Schartl M, Kalous L, Stöck M, Lamatsch DK. Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp. Nat Commun 2022; 13:4092. [PMID: 35835759 PMCID: PMC9283417 DOI: 10.1038/s41467-022-31515-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany
| | - Kang Du
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Lukáš Kalous
- Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany.
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Dunja K Lamatsch
- Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria.
| |
Collapse
|
10
|
Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol 2022; 6:1354-1366. [PMID: 35817827 PMCID: PMC9439954 DOI: 10.1038/s41559-022-01813-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates. Genome sequencing and haplotype assembly of two cyprinid teleosts, a sexual tetraploid and an unisexual hexaploid, reveal insights into the evolutionary mechanisms underpinning the reproductive success of unisexual polyploid vertebrates.
Collapse
|
11
|
Zhu C, Liu H, Pan Z, Cheng L, Sun Y, Wang H, Chang G, Wu N, Ding H, Zhao H, Zhang L, Yu X. Insights into chromosomal evolution and sex determination of Pseudobagrus ussuriensis (Bagridae, Siluriformes) based on a chromosome-level genome. DNA Res 2022; 29:dsac028. [PMID: 35861402 PMCID: PMC9358014 DOI: 10.1093/dnares/dsac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pseudobagrus ussuriensis is an aquaculture catfish with significant sexual dimorphism. In this study, a chromosome-level genome with a size of 741.97 Mb was assembled for female P. ussuriensis. A total of 26 chromosome-level contigs covering 97.34% of the whole-genome assembly were obtained with an N50 of 28.53 Mb and an L50 of 11. A total of 24,075 protein-coding genes were identified, with 91.54% (22,039) genes being functionally annotated. Based on the genome assembly, four chromosome evolution clusters of catfishes were identified and the formation process of P. ussuriensis chromosomes was predicted. A total of 55 sex-related quantitative trait loci (QTLs) with a phenotypic variance explained value of 100% were located on chromosome 8 (chr08). The QTLs and other previously identified sex-specific markers were located in a sex-determining region of 16.83 Mb (from 6.90 to 23.73 Mb) on chr08, which was predicted as the X chromosome. The sex-determining region comprised 554 genes, with 135 of which being differently expressed between males and females/pseudofemales, and 16 candidate sex-determining genes were screened out. The results of this study provided a useful chromosome-level genome for genetic, genomic and evolutionary studies of P. ussuriensis, and also be useful for further studies on sex-determination mechanism analysis and sex-control breeding of this fish.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Cheng
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yanhong Sun
- Wuhan Aquaculture Science Research Institute, Wuhan 430207, China
| | - Hui Wang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Guoliang Chang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Nan Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Huaiyu Ding
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haitao Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Zhang
- Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai’an City, Huai’an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai’an 223002, China
| | - Xiangsheng Yu
- Huai’an Fisheries Technical Guidance Station, Huai’an 223001, China
| |
Collapse
|
12
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
13
|
Tao W, Cao J, Xiao H, Zhu X, Dong J, Kocher TD, Lu M, Wang D. A Chromosome-Level Genome Assembly of Mozambique Tilapia ( Oreochromis mossambicus) Reveals the Structure of Sex Determining Regions. Front Genet 2021; 12:796211. [PMID: 34956335 PMCID: PMC8692795 DOI: 10.3389/fgene.2021.796211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The Mozambique tilapia (Oreochromis mossambicus) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O. mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O. mossambicus, using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O. mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1, indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Rockville, MD, United States
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Science, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Cui Z, Zhang J, Sun Z, Liu B, Zhao C, Chang Y. Identification of Sex-Specific Markers Through 2b-RAD Sequencing in the Sea Urchin ( Mesocentrotus nudus). Front Genet 2021; 12:717538. [PMID: 34422019 PMCID: PMC8375557 DOI: 10.3389/fgene.2021.717538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sex-specific markers play an important role in revealing sex-determination mechanism. Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in several Asian countries and its gonads are the sole edible parts for people. However, growth rate and immunocompetence differ by sex in this species, sex-specific markers have not been identified, and the sex-determination mechanism of sea urchin remains undetermined. In this study, type IIB endonuclease restriction-site associated DNA sequencing (2b-RAD-seq) and a genome survey of M. nudus were performed, and three female-specific markers and three female heterogametic single nucleotide polymorphism (SNP) loci were identified. We validated these sex-specific markers via PCR amplification in a large number of individuals, including wild and artificially bred populations. Several open reading frames (ORFs) were predicted, although there are no potential genes known for sex determination and sex differentiation within the scaffold in which the sex-specific markers are located. Importantly, the female-specific sequences and female heterozygous SNP loci indicate that a female heterogametic and male homogametic ZW/ZZ sex-determination system should exist in M. nudus. The results provide a solid basis for revealing the sex-determination mechanism of this species, and open up new possibilities for developing sex-control breeding in sea urchin.
Collapse
Affiliation(s)
- Zhouping Cui
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Zhang
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,School of Life Science, Liaoning Normal University, Dalian, China
| | - Zhihui Sun
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bingzheng Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chong Zhao
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
15
|
Mohammadzadeh S, Milla S, Ahmadifar E, Karimi M, Dawood MAO. Is the use of recombinant cGnRH may be a future alternative to control the fish spawning? Let us go with the goldfish example. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:951-960. [PMID: 33895896 DOI: 10.1007/s10695-021-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The use of recombinant gonadotropin-releasing hormone (rGnRH) has very rarely been tested in fish to promote spawning. This study evaluated the impact of recombinant chicken gonadotropin-releasing hormone (rcGnRH) with metoclopramide on the release of sex steroids and final maturation induction in goldfish (Carassius auratus) broodstock. For this purpose, goldfish broodstock was divided into four groups and treated with 0.9% NaCl with 20 mg/kg metoclopramide (Met) (C); 10 μg/kg body weight (BW) rcGnRH with 20 mg/kg metoclopramide (rcGn10); 15 μg/kg BW rcGnRH with 20 mg/kg metoclopramide (rcGn15); and 20 μg/kg BW rcGnRH with 20 mg/kg metoclopramide (rcGn20). The capability of the rcGnRH for eliciting biological response was tested in vivo by evaluating the changes of 17β estradiol (E2), testosterone (T), and 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) and the induced spawning. Blood samples were obtained at 0 h, 12 h, and 24 h after injection. The rcGn10, rcGn15, and rcGn20 treatments induced lower E2 concentration, especially 24 h post-injection. T levels were significantly higher in rcGn10, rcGn15, and rcGn20 treatments 12 h post-injection than at 0 h and then decreased at 24 h post-injection. Furthermore, the rcGnRH tested significantly enhanced DHP secretion in rcGn10, rcGn15, and rcGn20 treatments 12 h post-injection before a decline at 24 h post-injection. No significant difference between the sampling times was found in the C treatment for the 3 sex steroids tested. The results also displayed that rcGnRH at 10-20 µg/kg of body weight can trigger spawning with the highest speed and efficiency of spawning at 20 µg/kg. The obtained results represent a possible strategy for enhancing the artificial reproduction and ovulation of broodstock fish by rGnRH and further support the use of recombinant hormones to promote reproduction in aquaculture.
Collapse
Affiliation(s)
- Sedigheh Mohammadzadeh
- Fisheries Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Sylvain Milla
- Unit of Animal Research and Functionalities of Animal Products, University of Lorraine, USC INRA 340, 54505, Vandoeuvre-lès-Nancy, France
| | - Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol, Iran.
| | - Masoumeh Karimi
- Department of Biology, School of Science, Islamic Azad University of Parand, Tehran, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
16
|
Feron R, Pan Q, Wen M, Imarazene B, Jouanno E, Anderson J, Herpin A, Journot L, Parrinello H, Klopp C, Kottler VA, Roco AS, Du K, Kneitz S, Adolfi M, Wilson CA, McCluskey B, Amores A, Desvignes T, Goetz FW, Takanashi A, Kawaguchi M, Detrich HW, Oliveira MA, Nóbrega RH, Sakamoto T, Nakamoto M, Wargelius A, Karlsen Ø, Wang Z, Stöck M, Waterhouse RM, Braasch I, Postlethwait JH, Schartl M, Guiguen Y. RADSex: A computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol Ecol Resour 2021; 21:1715-1731. [PMID: 33590960 DOI: 10.1111/1755-0998.13360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
The study of sex determination and sex chromosome organization in nonmodel species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, restriction site-associated DNA sequencing (RAD-Seq) is being extensively applied to explore sex determination systems in many plant and animal species. However, software specifically designed to search for and visualize sex-biased markers using RAD-Seq data is lacking. Here, we present RADSex, a computational analysis workflow designed to study the genetic basis of sex determination using RAD-Seq data. RADSex is simple to use, requires few computational resources, makes no prior assumptions about the type of sex-determination system or structure of the sex locus, and offers convenient visualization through a dedicated R package. To demonstrate the functionality of RADSex, we re-analysed a published data set of Japanese medaka, Oryzias latipes, where we uncovered a previously unknown Y chromosome polymorphism. We then used RADSex to analyse new RAD-Seq data sets from 15 fish species spanning multiple taxonomic orders. We identified the sex determination system and sex-specific markers in six of these species, five of which had no known sex-markers prior to this study. We show that RADSex greatly facilitates the study of sex determination systems in nonmodel species thanks to its speed of analyses, low resource usage, ease of application and visualization options. Furthermore, our analysis of new data sets from 15 species provides new insights on sex determination in fish.
Collapse
Affiliation(s)
- Romain Feron
- INRAE, LPGP, Rennes, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiaowei Pan
- INRAE, LPGP, Rennes, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ming Wen
- INRAE, LPGP, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Jennifer Anderson
- INRAE, LPGP, Rennes, France.,Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden
| | | | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Christophe Klopp
- SIGENAE, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
| | - Verena A Kottler
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Alvaro S Roco
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Kang Du
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.,Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Frederick W Goetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Ato Takanashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Harry William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, USA
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masatoshi Nakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Zhongwei Wang
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ingo Braasch
- Department of Integrative Biology, Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | - Manfred Schartl
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.,Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|