1
|
Tharani PV, Rao KVB. A comprehensive review on microbial diversity and anticancer compounds derived from seaweed endophytes: a pharmacokinetic and pharmacodynamic approach. Arch Microbiol 2024; 206:403. [PMID: 39276253 DOI: 10.1007/s00203-024-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024]
Abstract
Seaweed endophytes are a rich source of microbial diversity and bioactive compounds. This review provides a comprehensive analysis of the microbial diversity associated with seaweeds and their interaction between them. These diverse bacteria and fungi have distinct metabolic pathways, which result in the synthesis of bioactive compounds with potential applications in a variety of health fields. We examine many types of seaweed-associated microorganisms, their bioactive metabolites, and their potential role in cancer treatment using a comprehensive literature review. By incorporating recent findings, we hope to highlight the importance of seaweed endophytes as a prospective source of novel anticancer drugs and promote additional studies in this area. We also investigate the pharmacokinetic and pharmacodynamic profiles of these bioactive compounds because understanding their absorption, distribution, metabolism, excretion (ADMET), and toxicity profiles is critical for developing bioactive compounds with anticancer potential into effective cancer drugs. This knowledge ensures the safety and efficacy of proposed medications prior to clinical trials. This study not only provides promise for novel and more effective treatments for cancer with fewer side effects, but it also emphasizes the necessity of sustainable harvesting procedures and ethical considerations for protecting the delicate marine ecology during bioprospecting activities.
Collapse
Affiliation(s)
- P V Tharani
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
3
|
Amarh V, Abbey BA, Acheampong SA, Debrah MA, Amarquaye GN, Arthur PK. Codeine dysregulates ribosome biogenesis in Escherichia coli with DNA double-strand breaks to chart path to new classes of antibiotics. FUTURE DRUG DISCOVERY 2023; 5:FDD84. [PMID: 38464684 PMCID: PMC10918497 DOI: 10.4155/fdd-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 03/12/2024] Open
Abstract
Aim A bacterial genetics-guided approach was utilized for the discovery of new compounds affecting bacterial genome stability. Materials & methods Fungal extracts and fractions were tested for genome instability-mediated antibacterial activity. Interaction assays and RT-qPCR were used to identify compounds that boost the activity of sub-minimum inhibitory concentration streptomycin and obtain insights on the molecular mechanisms of the primary hit compound, respectively. Results Several extracts and fractions caused bacterial genome instability. Codeine, in synergy with streptomycin, regulates double-strand break (DSB) repair and causes bacterial ribosome dysfunction in the absence of DSBs, and dysregulation of ribosome biogenesis in a DSB-dependent manner. Conclusion This study demonstrates a potential viable strategy that we are exploring for the discovery of new chemical entities with activities against Escherichia coli and other bacterial pathogens.
Collapse
Affiliation(s)
- Vincent Amarh
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| | - Benaiah Annertey Abbey
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| | - Samuel Akwasi Acheampong
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| | - Michael Acheampong Debrah
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| | - Gwendolyn Nita Amarquaye
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| | - Patrick Kobina Arthur
- Department of Biochemistry, Cell & Molecular Biology, West African Center for Cell Biology of Infectious Pathogens, University of Ghana, PO Box LG54, Legon, Accra, Ghana
| |
Collapse
|
4
|
Fordjour FA, Osei‐Poku P, Genfi AKA, Ainooson KG, Amponsah K, Arthur PK, Stephenson GR, Kwarteng A. Use of medicinal plants as a remedy against lymphatic filariasis: Current status and future prospect. Health Sci Rep 2023; 6:e1295. [PMID: 37251521 PMCID: PMC10224507 DOI: 10.1002/hsr2.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Despite the successes achieved so far with the Global Programme to Eliminate Lymphatic Filariasis, there is still an appreciable number of lymphatic filarial patients who need alternative treatment and morbidity management strategies. The unresponsiveness of some cohorts to the drugs used in the mass drug administration program is currently raising a lot of questions and this needs urgent attention. Natural medicinal plants have a long-standing history of being effective against most disease conditions. Countries such as India have been able to integrate their natural plant remedies into the treatment of lymphatic filarial conditions, and the results are overwhelmingly positive. Components of Azadirachta indica A. Juss, Parkia biglobosa, Adansonia digitata, and Ocimum spp have been shown to have anti-inflammatory, anticancerous, and antimicrobial activities in animal models. Therefore, this review calls for attention toward the use of natural plant components as an alternate treatment against lymphatic filariasis to help reduce the World Health Organization's burden of providing drugs for people in need of treatment every year.
Collapse
Affiliation(s)
- Fatima A. Fordjour
- Department of MicrobiologyUniversity for Development StudiesTamaleGhana
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Priscilla Osei‐Poku
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Afua K. A. Genfi
- Department of BiochemistryUniversity for Development StudiesTamaleGhana
| | - Kwaw G. Ainooson
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Kingsley Amponsah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Patrick K. Arthur
- Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGhana
| | | | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, College of ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
5
|
Marine Compounds with Anti-Candida sp. Activity: A Promised “Land” for New Antifungals. J Fungi (Basel) 2022; 8:jof8070669. [PMID: 35887426 PMCID: PMC9320905 DOI: 10.3390/jof8070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is still the major yeast causing human fungal infections. Nevertheless, in the last decades, non-Candida albicans Candida species (NCACs) (e.g., Candida glabrata, Candida tropicalis, and Candida parapsilosis) have been increasingly linked to Candida sp. infections, mainly in immunocompromised and hospitalized patients. The escalade of antifungal resistance among Candida sp. demands broadly effective and cost-efficient therapeutic strategies to treat candidiasis. Marine environments have shown to be a rich source of a plethora of natural compounds with substantial antimicrobial bioactivities, even against resistant pathogens, such as Candida sp. This short review intends to briefly summarize the most recent marine compounds that have evidenced anti-Candida sp. activity. Here, we show that the number of compounds discovered in the last years with antifungal activity is growing. These drugs have a good potential to be used for the treatment of candidiasis, but disappointedly the reports have devoted a high focus on C. albicans, neglecting the NCACs, highlighting the need to perform outspreading studies in the near future.
Collapse
|
6
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
7
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
8
|
Ren X, Xie X, Chen B, Liu L, Jiang C, Qian Q. Marine Natural Products: A Potential Source of Anti-hepatocellular Carcinoma Drugs. J Med Chem 2021; 64:7879-7899. [PMID: 34128674 DOI: 10.1021/acs.jmedchem.0c02026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) has high associated morbidity and mortality rates. Although chemical medication represents a primary HCC treatment strategy, low response rates and therapeutic resistance serve to reduce its efficacy. Hence, identifying novel effective drugs is urgently needed, and many researchers have sought to identify new anti-cancer drugs from marine organisms. The marine population is considered a "blue drug bank" of unique anti-cancer compounds with diverse groups of chemical structures. Here, we discuss marine-derived compounds, including PM060184 and bryostatin-1, with demonstrated anti-cancer activity in vitro or in vivo. Based on the marine source (sponges, algae, coral, bacteria, and fungi), we introduce pharmacological parameters, compound-induced cytotoxicity, effects on apoptosis and metastasis, and potential molecular mechanisms. Cumulatively, this review provides insights into anti-HCC research conducted to date in the field of marine natural products and marine-derived compounds, as well as the potential pharmacological mechanisms of these compounds and their status in drug development.
Collapse
Affiliation(s)
- Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| |
Collapse
|
9
|
Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|