1
|
Lan WX, Mo Q, Jin MM, Wen YH, Yang MQ, Ma H, Huang HQ, Huang MJ. Exploring the phylogenetic framework and trait evolution of Impatiens through chloroplast genome analysis. BMC PLANT BIOLOGY 2024; 24:1218. [PMID: 39702025 DOI: 10.1186/s12870-024-05964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The genus Impatiens, which includes both annual and perennial herbs, holds considerable ornamental, economic, and medicinal value. However, it posed significant challenges for taxonomic and systematic reconstruction. This was largely attributed to its high intraspecific diversity and low interspecific variation in morphological characteristics. In this study, we sequenced samples from 12 Impatiens species native to China and assessed their phylogenetic resolution using the complete chloroplast genome, in conjunction with published samples of Impatiens. In addition, a comparative analysis of chloroplast genomes were conducted to explore the evolution of the chloroplast genome in Impatiens. RESULTS The chloroplast genomes of 12 Impatiens species exhibited high similarity to previously published samples in terms of genome size, gene content, and sequence. The chloroplast genome of Impatiens exhibited a typical four-part structure, with lengths ranging from 146,987 bp(I. morsei)- 152,872 bp(I. jinpingensis). Our results identified 10 mutant hotspot regions (rps16, rps16-trnG, trnS-trnR, and rpoB-trnC) that could serve as effective molecular markers for phylogenetic analyses and species identification within the Impatiens. Phylogenetic analyses supported the classification of Impatiens as a monophyletic taxon. The identified affinities supported the taxonomic classification of the subgenus Clavicarpa within the Impatiens, with subgenus Clavicarpa being the first taxon to diverge. In phylogenetic tree,the Impatiens was divided into eight distinct clades. The results of ancestral trait reconstruction suggested that the ancestral traits of Impatiens included a perennial life cycle, four sepals and three pollen grooves. However, the ancestral morphology regarding fruit shape, flower colour, and spacing length remained ambiguous. CONCLUDE Our study largely supported the family-level taxonomic treatment of Impatiens species in China and demonstrated the utility of whole chloroplast genome sequences for phylogenetic resolution. Comparative analysis of the chloroplast genomes of Impatiens facilitated the development of molecular markers.The results of ancestral trait reconstruction showed that the ancestor type of habit was perennial, the number of sepals was 4, and morphology and number of aperture was 3 colpus. The traits of capsule shape, flower colour, and spur length underwent a complex evolutionary process. Our results provided data support for further studies and some important new insights into the evolution of the Impatiens.
Collapse
Affiliation(s)
- Wen-Xiang Lan
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Qing Mo
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Meng-Meng Jin
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yong-Hui Wen
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Meng-Qing Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hui Ma
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hai-Quan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| | - Mei-Juan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
2
|
Gu Y, Yang L, Zhou J, Xiao Z, Lu M, Zeng Y, Tan X. Mitochondrial genome study of Camellia oleifera revealed the tandem conserved gene cluster of nad5-nads in evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1396635. [PMID: 39290735 PMCID: PMC11405228 DOI: 10.3389/fpls.2024.1396635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Camellia oleifera is a kind of high-quality oil supply species. Its seeds contain rich unsaturated fatty acids and antioxidant active ingredients, which is a kind of high-quality edible oil. In this study, we used bioinformatics methods to decipher a hexaploid Camellia oil tree's mitochondrial (mt) genome based on second-generation sequencing data. A 709,596 bp circular map of C. oleifera mt genome was found for the first time. And 74 genes were annotated in the whole genome. Mt genomes of C. oleifera and three Theaceae species had regions with high similarity, including gene composition and gene sequence. At the same time, five conserved gene pairs were found in 20 species. In all of the mt genomes, most of nad genes existed in tandem pairs. In addition, the species classification result, which, according to the gene differences in tandem with nad5 genes, was consistent with the phylogenetic tree. These initial results provide a valuable basis for the further researches of Camellia oleifera and a reference for the systematic evolution of plant mt genomes.
Collapse
Affiliation(s)
- Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Zhun Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
- School of Foreign Languages, Changsha Social Work College, Changsha, China
| | - Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
3
|
Li L, Li X, Liu Y, Li J, Zhen X, Huang Y, Ye J, Fan L. Comparative analysis of the complete mitogenomes of Camellia sinensis var. sinensis and C. sinensis var. assamica provide insights into evolution and phylogeny relationship. FRONTIERS IN PLANT SCIENCE 2024; 15:1396389. [PMID: 39239196 PMCID: PMC11374768 DOI: 10.3389/fpls.2024.1396389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Introduction Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xiangru Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yun Liu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Junda Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Zhen
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yu Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| |
Collapse
|
4
|
Liu Q, Dai J, Chen J, Liu Z, Lin Y, Qiu G, Gao X, Zhang R, Zhu S. Comparative analysis the chloroplast genomes of Celastrus (Celastraceae) species: Provide insights into molecular evolution, species identification and phylogenetic relationships. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155770. [PMID: 38851103 DOI: 10.1016/j.phymed.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The genus Celastrus is an important medicinal plant resource. The similarity of morphology and the lack of complete chloroplast genome analysis have significantly impeded the exploration of species identification, molecular evolution and phylogeny of Celastrus. PURPOSE In order to resolve the phylogenic controversy of Celastrus species, the chloroplast genome comparative analysis was performed to provide genetic evidence. METHODS In this study, we collected and sequenced ten chloroplast genomes of Celastrus species from China and downloaded three chloroplast genomes from the databases. The chloroplast genomes were compared and analyzed to explore their characteristics and evolution. Furthermore, the phylogenetic relationships of Celastrus species were inferred based on the whole chloroplast genomes and protein-coding genes. RESULTS All the 13 Celastrus species chloroplast genomes showed a typical quadripartite structure with genome sizes ranging from 155,113 to 157,366 bp. The intron loss of the rps16 gene occurred in all the 13 Celastrus species. The GC content, gene sequence, repeat types and codon bias pattern were highly conserved. Ten highly variation regions were identified, which can be used as potential DNA markers in molecular identification of Celastrus species. Eight genes, including accD, atp4, ndhB, rpoC1, rbcL, rpl2, rpl20 and ycf1, were detected to experience positive selection. Phylogenetic analysis showed that Celastrus was a monophyletic group and Tripterygium was the closest sister-group. Noteworthy, C. gemmatus Loes. and C. orbiculatus Thunb. can be discriminated using the chloroplast genome as a super barcode. The comparative and phylogenetic analysis results proposed that C. tonkinensis Pitard. was the synonym of C. hindsii Benth. CONCLUSION The comparative analysis of the Celastrus chloroplast genomes can provide comprehensive genetic evidence for molecular evolution, species identification and phylogenetic relationships.
Collapse
Affiliation(s)
- Qiaozhen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiwen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zhang Z, Shi X, Tian H, Qiu J, Ma H, Tan D. Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae. Genes (Basel) 2024; 15:886. [PMID: 39062665 PMCID: PMC11276580 DOI: 10.3390/genes15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunyan Tan
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Z.Z.); (X.S.); (H.T.); (J.Q.); (H.M.)
| |
Collapse
|
6
|
Lee SR, Oh A, Son DC. Characterization, comparison, and phylogenetic analyses of chloroplast genomes of Euphorbia species. Sci Rep 2024; 14:15352. [PMID: 38961172 PMCID: PMC11222452 DOI: 10.1038/s41598-024-66102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
The genus Euphorbia (Euphorbiaceae) has near-cosmopolitan distribution and serves as a significant resource for both ornamental and medicinal purposes. Despite its economic importance, Euphorbia's taxonomy has long been challenged by the intricate nature of morphological traits exhibiting high levels of convergence. While molecular markers are essential for phylogenetic studies, their availability for Euphorbia has been limited. To address this gap, we conducted comparative analyses focusing on the chloroplast (CP) genomes of nine Euphorbia species, incorporating three newly sequenced and annotated accessions. In addition, phylogenetic informativeness and nucleotide diversity were computed to identify candidate markers for phylogenetic analyses among closely related taxa in the genus. Our investigation revealed relatively conserved sizes and structures of CP genomes across the studied species, with notable interspecific variations observed primarily in non-coding regions and IR/SC borders. By leveraging phylogenetic informativeness and nucleotide diversity, we identified rpoB gene as the optimal candidate for species delimitation and shallow-level phylogenetic inference within the genus. Through this comprehensive analysis of CP genomes across multiple taxa, our study sheds light on the evolutionary dynamics and taxonomic intricacies of Euphorbia, offering valuable insights into its CP genome evolution and taxonomy.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, 11186, Republic of Korea.
| |
Collapse
|
7
|
Gan Y, Ping J, Liu X, Peng C. Repetitive Sequences, Codon Usage Bias and Phylogenetic Analysis of the Plastome of Miliusa glochidioides. Biochem Genet 2024:10.1007/s10528-024-10874-7. [PMID: 38954211 DOI: 10.1007/s10528-024-10874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.
Collapse
Affiliation(s)
- Yangying Gan
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jingyao Ping
- College of Life Sciences, Sun Yet-sen University, Guangzhou, 510275, China
| | - Xiaojing Liu
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Caixia Peng
- Horticulture Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
8
|
Oyuntsetseg D, Nyamgerel N, Baasanmunkh S, Oyuntsetseg B, Urgamal M, Yoon JW, Bayarmaa GA, Choi HJ. The complete chloroplast genome and phylogentic results support the species position of Swertia banzragczii and Swertia marginata (Gentianaceae) in Mongolia. BOTANICAL STUDIES 2024; 65:11. [PMID: 38656420 PMCID: PMC11043322 DOI: 10.1186/s40529-024-00417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Swertia banzragczii and S. marginata are important medicinal species in Mongolia. However, their taxonomic positions and genetic backgrounds remain unknown. In this study, we explored the complete chloroplast genomes and DNA barcoding of these species and compared them with those of closely related species within the subgenus to determine their taxonomic positions and phylogenetic relationships. RESULT The chloroplast genomes of S. banzragczii and S. marginata encoded 114 genes, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 16 genes contained a single intron, and 2 genes had two introns. Closely related species had a conserved genome structure and gene content. Only differences in genome length were noticed, which were caused by the expansion and contraction of the inverted repeat (IR) region and loss of exons in some genes. The trnH-GUG-psbA and trnD-GUC-trnY-GUA intergenic regions had high genetic diversity within Swertia plastomes. Overall, S. banzragczii and S. marginata are true species and belong to the subgenus Swertia. CONCLUSIONS These results provide valuable genetic and morphological information on rare and subendemic Swertia species in Mongolia, which can be used for further advanced studies on the Swertia genus.
Collapse
Affiliation(s)
- Dashzeveg Oyuntsetseg
- Department of Biology, School of Arts and Sciences, National University of Mongolia, 14201, Ulaanbaatar, Mongolia
| | - Nudkhuu Nyamgerel
- Department of Biology and Chemistry, Changwon National University, 51140, Changwon, South Korea
| | - Shukherdorj Baasanmunkh
- Department of Biology and Chemistry, Changwon National University, 51140, Changwon, South Korea
| | - Batlai Oyuntsetseg
- Department of Biology, School of Arts and Sciences, National University of Mongolia, 14201, Ulaanbaatar, Mongolia
| | - Magsar Urgamal
- Laboratory of Plant Taxonomy and Phylogenetic, Botanic Garden and Research Institute, Mongolian Academy of Sciences, 13330, Ulaanbaatar, Mongolia
| | - Jung Won Yoon
- DMZ Botanic Garden, Korea National Arboretum, 11186, Pocheon, South Korea
| | - Gun-Aajav Bayarmaa
- Department of Biology, School of Arts and Sciences, National University of Mongolia, 14201, Ulaanbaatar, Mongolia.
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, 51140, Changwon, South Korea.
| |
Collapse
|
9
|
Kim TH, Ha YH, Setoguchi H, Choi K, Kim SC, Kim HJ. First Record of Comparative Plastid Genome Analysis and Phylogenetic Relationships among Corylopsis Siebold & Zucc. (Hamamelidaceae). Genes (Basel) 2024; 15:380. [PMID: 38540439 PMCID: PMC10970243 DOI: 10.3390/genes15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Corylopsis Siebold & Zucc. (Hamamelidaceae) is widely used as a horticultural plant and comprises approximately 25 species in East Asia. Molecular research is essential to distinguish Corylopsis species, which are morphologically similar. Molecular research has been conducted using a small number of genes but not in Corylopsis. Plastid genomes of Corylopsis species (Corylopsis gotoana, Corylopsis pauciflora, and Corylopsis sinensis) were sequenced using next-generation sequencing techniques. Repeats and nucleotide diversity that could be used as DNA markers were also investigated. A phylogenetic investigation was carried out using 79 protein-coding genes to infer the evolutionary relationships within the genus Corylopsis. By including new plastomes, the overall plastid genome structure of Corylopsis was similar. Simple sequence repeats of 73-106 SSRs were identified in the protein-coding genes of the plastid genomes, and 33-40 long repeat sequences were identified in the plastomes. The Pi value of the rpl33_rps18 region, an intergenic spacer, was the highest. Phylogenetic analysis demonstrated that Corylopsis is a monophyletic group and Loropetalum is closely related to Corylopsis. C. pauciflora, C. gotoana, and C. spicata formed a clade distributed in Japan, whereas C. sinensis, C. glandulifera, and C. velutina formed a clade that was distributed in China.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Kyung Choi
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| |
Collapse
|
10
|
Li MM, Meegahakumbura MK, Wambulwa MC, Burgess KS, Möller M, Shen ZF, Li DZ, Gao LM. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea ( Camellia sinensis var. assamica). PLANT DIVERSITY 2024; 46:229-237. [PMID: 38807909 PMCID: PMC11128837 DOI: 10.1016/j.pld.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 05/30/2024]
Abstract
Chinese Assam tea (Camellia sinensis var. assamica) is an important tea crop with a long history of cultivation in Yunnan, China. Despite its potential value as a genetic resource, its genetic diversity and domestication/breeding history remain unclear. To address this issue, we genotyped 469 ancient tea plant trees representing 26 C. sinensis var. assamica populations, plus two of its wild relatives (six and three populations of C. taliensis and C. crassicolumna, respectively) using 16 nuclear microsatellite loci. Results showed that Chinese Assam tea has a relatively high, but comparatively lower gene diversity (HS = 0.638) than the wild relative C. crassicolumna (HS = 0.658). Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups, with considerable interspecific introgression. The Chinese Assam tea accessions clustered into three gene pools, corresponding well with their geographic distribution. However, NewHybrids analysis indicated that 68.48% of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools. In addition, 10% of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C. taliensis. Our results suggest that Chinese Assam tea was domesticated separately in three gene pools (Puer, Lincang and Xishuangbanna) in the Mekong River valley and that the hybrids were subsequently selected during the domestication process. Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex, our results will help to identify valuable genetic resources that may be useful in future tea breeding programs.
Collapse
Affiliation(s)
- Miao-Miao Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Muditha K. Meegahakumbura
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, 170-90200, Kitui, Kenya
| | - Kevin S. Burgess
- Department of Biology, Columbus State University, University System of Georgia, Columbus, GA, 31907-5645, USA
| | - Michael Möller
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland, UK
| | - Zong-Fang Shen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| |
Collapse
|
11
|
Shim D, Jeon SH, Kim JC, Yoon DK. Comparative Phylogenetic Analysis of Ancient Korean Tea "Hadong Cheon-Nyeon Cha ( Camellia sinensis var. sinensis)" Using Complete Chloroplast Genome Sequences. Curr Issues Mol Biol 2024; 46:1091-1106. [PMID: 38392187 PMCID: PMC10888334 DOI: 10.3390/cimb46020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Wild teas are valuable genetic resources for studying evolution and breeding. Here, we report the complete chloroplast genome of the ancient Korean tea 'Hadong Cheon-nyeon Cha' (C. sinensis var. sinensis), which is known as the oldest tea tree in Korea. This study determined seven Camellia sinensis var. sinenesis, including Hadong Cheon-nyeon Cha (HCNC) chloroplast genome sequences, using Illumina sequencing technology via de novo assembly. The chloroplast genome sizes ranged from 157,019 to 157,114 bp and were organized into quadripartite regions with the typical chloroplast genomes. Further, differences in SNPs and InDels were detected across the seven chloroplast genomes through variance analysis. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These genomic resources provide evolutionary insight into Korean tea plant cultivars and lay the foundation for a better understanding of the ancient Korean tea plant HCNC.
Collapse
Affiliation(s)
- Doobo Shim
- Institute of Hadong Green Tea, Hadong 52304, Republic of Korea
| | - Seung Ho Jeon
- Department of Agricultural Life Science, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong Cheol Kim
- Institute of Hadong Green Tea, Hadong 52304, Republic of Korea
| | - Dong-Kyung Yoon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| |
Collapse
|
12
|
Feng L, Zhao G, An M, Wang C, Yin Y. Complete chloroplast genome sequences of the ornamental plant Prunus cistena and comparative and phylogenetic analyses with its closely related species. BMC Genomics 2023; 24:739. [PMID: 38053028 DOI: 10.1186/s12864-023-09838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Prunus cistena is an excellent color leaf configuration tree for urban landscaping in the world, which has purplish red leaves, light pink flowers, plant shape and high ornamental value. Genomic resources for P. cistena are scarce, and a clear phylogenetic and evolutionary history for this species has yet to be elucidated. Here, we sequenced and analyzed the complete chloroplast genome of P. cistena and compared it with related species of the genus Prunus based on the chloroplast genome. RESULTS The complete chloroplast genome of P. cistena is a 157,935 bp long typical tetrad structure, with an overall GC content of 36.72% and higher GC content in the in the inverted repeats (IR) regions than in the large single-copy (LSC) and small single-copy (SSC) regions. It contains 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The ycf3 and clpP genes have two introns, with the longest intron in the trnK-UUU gene in the LSC region. Moreover, the genome has a total of 253SSRs, with the mononucleotide SSRs being the most abundant. The chloroplast sequences and gene arrangements of P. cistena are highly conserved, with the overall structure and gene order similar to other Prunus species. The atpE, ccsA, petA, rps8, and matK genes have undergone significant positive selection in Prunus species. P. cistena has a close evolutionary relationship with P. jamasakura. The coding and IR regions are more conserved than the noncoding regions, and the chloroplast DNA sequences are highly conserved throughout the genus Prunus. CONCLUSIONS The current genomic datasets provide valuable information for further species identification, evolution, and phylogenetic research of the genus Prunus.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Guopeng Zhao
- Yantai Testing Center for Food and Drug, Yantai, 264005, Shandong, China
| | - Mengmeng An
- Zibo Academy of Agricultural Sciences, Zibo, 255000, Shandong, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| |
Collapse
|
13
|
Liu H, Liu X, Sun C, Li HL, Li ZX, Guo Y, Fu XQ, Liao QH, Zhang WL, Liu YQ. Chloroplast Genome Comparison and Phylogenetic Analysis of the Commercial Variety Actinidia chinensis 'Hongyang'. Genes (Basel) 2023; 14:2136. [PMID: 38136958 PMCID: PMC10743354 DOI: 10.3390/genes14122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.
Collapse
Affiliation(s)
- Han Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Chong Sun
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Zhe-Xin Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yuan Guo
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Xue-Qian Fu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Qin-Hong Liao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Wen-Lin Zhang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yi-Qing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| |
Collapse
|
14
|
Li J, Du Y, Xie L, Jin X, Zhang Z, Yang M. Comparative plastome genomics and phylogenetic relationships of the genus Trollius. FRONTIERS IN PLANT SCIENCE 2023; 14:1293091. [PMID: 38046610 PMCID: PMC10690957 DOI: 10.3389/fpls.2023.1293091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Trollius, a genus in the Ranunculaceae family, has significant medicinal and ornamental value. It is widely distributed in China with 16 different species accepted. However, due to the lack of enough samples and information sites, the molecular phylogenetic relationships of Trollius have been unresolved till now. Here we sequenced, assembled and annotated the plastomes of 16 Trollius species to investigate their genomic characteristics, inverted repeat (IR) boundaries, sequence repeats, and hypervariable loci. In addition, the phylogenetic relationships of this genus was reconstructed based on the whole plastomes and the protein-coding sequences data-sets. The plastomes of Trollius ranged between 159,597 bp and 160,202 bp in length, and contained 113 unique genes, including 79 protein coding, 30 tRNA, and 4 rRNA. The IR boundaries were relatively conserved within the genus Trollius. 959 simple sequence repeats and 657 long sequence repeats were detected in the Trollius plastomes. We identified 12 highly polymorphic loci (Pi > 0.0115) that can be used as plastid markers in molecular identification and phylogenetic investigation of the genus. Besides, Trollius was a monophyletic group with the earliest divergence clade being Trollius lilacinus Bunge, and the remaining species were divided into two strongly-supported clades. The phylogeny in our study supported the traditional classification systems based on the color of sepal, but not the previous classification system based on the types and relative lengths of the nectaries, and distribution. The genomic resources provided in our study can be used in the taxonomy of the genus Trollius, promoting the development and utilization of this genus.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Du
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhirong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Meiqing Yang
- School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
15
|
Zhang Q, Folk RA, Mo ZQ, Ye H, Zhang ZY, Peng H, Zhao JL, Yang SX, Yu XQ. Phylotranscriptomic analyses reveal deep gene tree discordance in Camellia (Theaceae). Mol Phylogenet Evol 2023; 188:107912. [PMID: 37648181 DOI: 10.1016/j.ympev.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Gene tree discordance is a significant legacy of biological evolution. Multiple factors can result in incongruence among genes, such as introgression, incomplete lineage sorting (ILS), gene duplication or loss. Resolving the background of gene tree discordance is a critical way to uncover the process of species diversification. Camellia, the largest genus in Theaceae, has controversial taxonomy and systematics due in part to a complex evolutionary history. We used 60 transcriptomes of 55 species, which represented 15 sections of Camellia to investigate its phylogeny and the possible causes of gene tree discordance. We conducted gene tree discordance analysis based on 1,617 orthologous low-copy nuclear genes, primarily using coalescent species trees and polytomy tests to distinguish hard and soft conflict. A selective pressure analysis was also performed to assess the impact of selection on phylogenetic topology reconstruction. Our results detected different levels of gene tree discordance in the backbone of Camellia, and recovered rapid diversification as one of the possible causes of gene tree discordance. Furthermore, we confirmed that none of the currently proposed sections of Camellia was monophyletic. Comparisons among datasets partitioned under different selective pressure regimes showed that integrating all orthologous genes provided the best phylogenetic resolution of the species tree of Camellia. The findings of this study reveal rapid diversification as a major source of gene tree discordance in Camellia and will facilitate future investigation of reticulate relationships at the species level in this important plant genus.
Collapse
Affiliation(s)
- Qiong Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, MS 39762, United States
| | - Zhi-Qiong Mo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China
| | - Zhao-Yuan Zhang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Shi-Xiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
16
|
Liang YN, Li H, Huang XY, Bin YJ, Zhen YM, Qin XM. The complete chloroplast genome and phylogenomic analysis of Camellia sinensis var. sinensis cultivar 'Liupao', a landrace from Guangxi, China. Mitochondrial DNA B Resour 2023; 8:921-926. [PMID: 37645477 PMCID: PMC10461518 DOI: 10.1080/23802359.2023.2250072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Liupao tea is one of the well-known Chinese tea brands and a famous local specialty in Wuzhou, Guangxi, China. However, the genetic background and phylogenetic relationship of the native resource plants of Liupao tea need study, especially at the genomic level. In this study, we reported the complete chloroplast (cp) genome sequence of Camellia sinensis var. sinensis cultivar 'Liupao' (LP, Liupao tea population) and inferred its phylogenetic relationship to other tea plant variants or cultivars. The cp genome had a total length of 157,097 bp and the overall GC content was 37.3%. The cp genome contained one LSC region (86,641 bp) and one SSC region (18,276 bp), which were separated by two IR regions (26,090 bp, respectively). Moreover, the cp genomes were composed of 130 genes, including 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The phylogenetic analysis showed that LP was closely related to C. sinensis var. pabilimba cv. 'Lingyunbaihao'. This study will provide useful information for further investigating the genetic background, evolution, and breeding of LP as well as other tea cultivars and varieties.
Collapse
Affiliation(s)
- Yan-Ni Liang
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Hong Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xi-Yang Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yue-Jing Bin
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Yu-Mei Zhen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
17
|
Shi N, Yang Z, Miao K, Tang L, Zhou N, Xie P, Wen G. Comparative analysis of the medicinal plant Polygonatum kingianum (Asparagaceae) with related verticillate leaf types of the Polygonatum species based on chloroplast genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1202634. [PMID: 37680362 PMCID: PMC10482041 DOI: 10.3389/fpls.2023.1202634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023]
Abstract
Background Polygonatum kingianum has been widely used as a traditional Chinese medicine as well as a healthy food. Because of its highly variable morphology, this medicinal plant is often difficult to distinguish from other related verticillate leaf types of the Polygonatum species. The contaminants in P. kingianum products not only decrease the products' quality but also threaten consumer safety, seriously inhibiting the industrial application of P. kingianum. Methods Nine complete chloroplast (cp) genomes of six verticillate leaf types of the Polygonatum species were de novo assembled and systematically analyzed. Results The total lengths of newly sequenced cp genomes ranged from 155,437 to 155,977 bp, including 86/87 protein-coding, 38 tRNA, and 8 rRNA genes, which all exhibited well-conserved genomic structures and gene orders. The differences in the IR/SC (inverted repeats/single-copy) boundary regions and simple sequence repeats were detected among the verticillate leaf types of the Polygonatum cp genomes. Comparative cp genomes analyses revealed that a higher similarity was conserved in the IR regions than in the SC regions. In addition, 11 divergent hotspot regions were selected, providing potential molecular markers for the identification of the Polygonatum species with verticillate leaf types. Phylogenetic analysis indicated that, as a super barcode, plastids realized a fast and efficient identification that clearly characterized the relationships within the verticillate leaf types of the Polygonatum species. In brief, our results not only enrich the data on the cp genomes of the genus Polygonatum but also provide references for the P. kingianum germplasm resource protection, herbal cultivation, and drug production. Conclusion This study not only accurately identifies P. kingianum species, but also provides valuable information for the development of molecular markers and phylogenetic analyses of the Polygonatum species with verticillate leaf types.
Collapse
Affiliation(s)
- Naixing Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zefen Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ke Miao
- Chinese Academy of Sciences (CAS) Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lilei Tang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nian Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Pingxuan Xie
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guosong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Xu XM, Wei Z, Sun JZ, Zhao QF, Lu Y, Wang ZL, Zhu SX. Phylogeny of Leontopodium (Asteraceae) in China-with a reference to plastid genome and nuclear ribosomal DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1163065. [PMID: 37583593 PMCID: PMC10425225 DOI: 10.3389/fpls.2023.1163065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
The infrageneric taxonomy system, species delimitation, and interspecies systematic relationships of Leontopodium remain controversial and complex. However, only a few studies have focused on the molecular phylogeny of this genus. In this study, the characteristics of 43 chloroplast genomes of Leontopodium and its closely related genera were analyzed. Phylogenetic relationships were inferred based on chloroplast genomes and nuclear ribosomal DNA (nrDNA). Finally, together with the morphological characteristics, the relationships within Leontopodium were identified and discussed. The results showed that the chloroplast genomes of Filago, Gamochaeta, and Leontopodium were well-conserved in terms of gene number, gene order, and GC content. The most remarkable differences among the three genera were the length of the complete chloroplast genome, large single-copy region, small single-copy region, and inverted repeat region. In addition, the chloroplast genome structure of Leontopodium exhibited high consistency and was obviously different from that of Filago and Gamochaeta in some regions, such as matk, trnK (UUU)-rps16, petN-psbM, and trnE (UUC)-rpoB. All the phylogenetic trees indicated that Leontopodium was monophyletic. Except for the subgeneric level, our molecular phylogenetic results were inconsistent with the previous taxonomic system, which was based on morphological characteristics. Nevertheless, we found that the characteristics of the leaf base, stem types, and carpopodium base were phylogenetically correlated and may have potential value in the taxonomic study of Leontopodium. In the phylogenetic trees inferred using complete chloroplast genomes, the subgen. Leontopodium was divided into two clades (Clades 1 and 2), with most species in Clade 1 having herbaceous stems, amplexicaul, or sheathed leaves, and constricted carpopodium; most species in Clade 2 had woody stems, not amplexicaul and sheathed leaves, and not constricted carpopodium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Xu XM, Liu DH, Zhu SX, Wang ZL, Wei Z, Liu QR. Phylogeny of Trigonotis in China-with a special reference to its nutlet morphology and plastid genome. PLANT DIVERSITY 2023; 45:409-421. [PMID: 37601540 PMCID: PMC10435912 DOI: 10.1016/j.pld.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 08/22/2023]
Abstract
The genus Trigonotis comprises nearly 60 species mainly distributed in East and Southeast Asia. China has the largest number of Trigonotis species in the world, with a total of 44 species, of which 38 are endemic. Nutlet morphology is useful for the taxonomic delimitation of Trigonotis. However, there are still controversial circumscriptions of nutlet shape in some species. In previous studies, interspecies phylogenetic relationships were inferred using few DNA markers and very few taxa, which possibly led to erroneous or incomplete conclusions. In this study, the nutlet morphology of 39 Trigonotis taxa and the characteristics of 34 complete chloroplast genomes (29 taxa) were investigated and analyzed. Then, the phylogenetic relationships were discussed within this genus based on complete chloroplast genomes. To the best of our knowledge, this study is the first comprehensive analysis of nutlet morphology and complete chloroplast genome of Trigonotis. Based on nutlet morphology, Trigonotis can be divided into two groups: Group 1, hemispherical or oblique tetrahedron with carpopodiums, and Group 2, inverted tetrahedron without carpopodiums. The chloroplast genome of Trigonotis exhibited a typical quadripartite structure, including 84-86 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes, with a total length of 147,247-148,986 bp. Genes in the junctions were well conserved in Trigonotis, similar to those in other Boraginaceae s.str. species. Furthermore, Trigonotis chloroplast genomes showed relatively high diversity, with more conserved genic regions than intergenic regions; in addition, we detected 14 hot spots (Pi > 0.005) in non-coding regions. Phylogenetic analyses based on chloroplast genome data identified highly resolved relationships between Trigonotis species. Specifically, Trigonotis was divided into two clades with strong support: one clade included species with hemispherical or oblique tetrahedron nutlets with carpopodiums and bracts, whereas the other clade included species with inverted tetrahedron nutlets without carpopodiums or bracts. Our results may inform future taxonomic, phylogenetic, and evolutionary studies on Boraginaceae.
Collapse
Affiliation(s)
- Xue-Min Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan-Hui Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen-Long Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
20
|
Gao Y, Li S, Yuan G, Fang J, Shen G, Tian Z. Comparison of Biological and Genetic Characteristics between Two Most Common Broad-Leaved Weeds in Paddy Fields: Ammannia arenaria and A. multiflora (Lythraceae). BIOLOGY 2023; 12:936. [PMID: 37508367 PMCID: PMC10375975 DOI: 10.3390/biology12070936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
Ammannia arenaria and A. multifloras, morphologically similar at the seedling stage, are the most common broad-leaved weeds in paddy fields. Our study showed that A. arenaria occupied more space than A. multifloras when competing with rice. However, A. multifloras germination has lower temperature adaptability. No difference in sensitivity to common herbicides between two Ammannia species was observed. Chloroplast (cp) genomes could be conducive to clarify their genetic relationship. The complete cp genome sequences of A. arenaria (158,401 bp) and A. multiflora (157,900 bp) were assembled for the first time. In A. arenaria, there were 91 simple sequence repeats, 115 long repeats, and 86 protein-encoding genes, one, sixteen, and thirty more than those in A. multiflora. Inverted repeats regions expansion and contraction and the phylogenetic tree based on cp genomes demonstrated the closely relationship between the two species. However, in A. arenaria, 20 single nucleotide polymorphisms in the CDS region were detected compared to A. multiflora, which can be used to distinguish the two species. Moreover, there was one unique gene, infA, only in A. arenaria. This study provides reliable molecular resources for future research focusing on the infrageneric taxa identification, phylogenetic resolution, population structure, and biodiversity of Ammannia species.
Collapse
Affiliation(s)
- Yuan Gao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shenghui Li
- College of Agriculture, Anshun University, Anshun 561000, China
| | - Guohui Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiapeng Fang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Guohui Shen
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhihui Tian
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
21
|
Li Y, Sun M, Sun Y, Wang M, Zhao F. The complete chloroplast genome of Eurya rubiginosa var. attenuata H. T. Chang (Pentaphylacaceae). Mitochondrial DNA B Resour 2023; 8:639-642. [PMID: 37312969 PMCID: PMC10259296 DOI: 10.1080/23802359.2023.2220433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Eurya rubiginosa var. attenuata is a valuable multiuse tree with a long history of use in China. It has great economic and ecological importance and is used for landscape and urban planting, soil improvement, and raw materials for food production. However, genomic studies of E. rubiginosa var. attenuata are limited. Meanwhile, the classification of this taxon is controversial. In this study, the complete plastome of E. rubiginosa var. attenuata was successfully sequenced and assembled. The chloroplast genome is 157,215 bp in length with a 37.3% GC content. The chloroplast genome structure includes a quadripartite structure comprising a pair of inverted repeat (IR) sequences of 25,872 bp, a small single-copy (SSC) region of 18,216 bp, and a large single-copy (LSC) region of 87,255 bp. The genome contains 128 genes, including 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic inference based on complete plastome analysis showed that E. rubiginosa var. attenuata is closely related to E. alata and belongs to the family Pentaphylacaceae, which differs from the results of the traditional Engler system. The chloroplast genome sequence assembly and phylogenetic analysis enrich the genetic resources of Pentaphylacaceae and provide a molecular basis for further studies on the phylogeny of the family.
Collapse
Affiliation(s)
- Yingshuo Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Minghao Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Yueqi Sun
- Forestry College, Nanjing Forestry University, Nanjing, China
| | - Mingqiang Wang
- Academy of Environmental Planning & Design Co., Ltd., Nanjing University, China
| | - Fuwei Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|
22
|
Zhu C, Jiang Y, Bai Y, Dong S, Zhirong S. Comparative study on chloroplast genomes of three Hansenia forbesii varieties (Apiaceae). PLoS One 2023; 18:e0286587. [PMID: 37262084 DOI: 10.1371/journal.pone.0286587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
To find the gene hypervariable regions of three varieties of Hansenia forbesii H. Boissieu and determine their phylogenetic relationship, the chloroplast (cp) genome of these three varieties were firstly sequencing by the Illumina hiseq platform. In this study, we assembled the complete cp genome sequences of Hansenia forbesii LQ (156,954 bp), H. forbesii QX (157,181 bp), H. forbesii WQ (156,975 bp). They all contained 84 protein-coding genes, 37 tRNAs, and 8 rRNAs. The hypervariable regions between three cp genomes were atpF-atpH, petD, and rps15-ycf1. Phylogenetic analysis showed that H. forbesii LQ and H. forbesii WQ were closely related, followed by H. forbesii QX. This study showed that the three varieties of H. forbesii could be identified by the complete cp genome and specific DNA barcode (trnC-GCA-petN) and provided a new idea for germplasm identification of similar cultivated varieties.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine. Beijing, Beijing, China
| | - Yuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine. Beijing, Beijing, China
| | - Yu Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine. Beijing, Beijing, China
| | - Shengjian Dong
- College of Applied Technology, Gansu Agricultural University. Lanzhou, Gansu, China
| | - Sun Zhirong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine. Beijing, Beijing, China
| |
Collapse
|
23
|
Zhai Y, Zhang T, Guo Y, Gao C, Zhou L, Feng L, Zhou T, Xumei W. Phylogenomics, phylogeography and germplasms authentication of the Rheum palmatum complex based on complete chloroplast genomes. JOURNAL OF PLANT RESEARCH 2023; 136:291-304. [PMID: 36808315 DOI: 10.1007/s10265-023-01440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.
Collapse
Affiliation(s)
- Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanbing Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wang Xumei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
24
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
25
|
Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. Int J Mol Sci 2023; 24:ijms24043606. [PMID: 36835020 PMCID: PMC9964644 DOI: 10.3390/ijms24043606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Lagerstroemia indica L. is a well-known ornamental plant with large pyramidal racemes, long flower duration, and diverse colors and cultivars. It has been cultivated for nearly 1600 years and is essential for investigating the germplasm and assessing genetic variation to support international cultivar identification and breeding programs. In this study, 20 common Lagerstroemia indica cultivars from different varietal groups and flower morphologies, as well as multiple wild relative species, were analyzed to investigate the maternal donor of Lagerstroemia indica cultivars and to discover the genetic variation and relationships among cultivars based on plastome and nuclear ribosomal DNA (nrDNA) sequences. A total of 47 single nucleotide polymorphisms (SNPs) and 24 insertion/deletions (indels) were identified in the 20 L. indica cultivars' plastome and 25 SNPs were identified in the nrDNA. Phylogenetic analysis based on the plastome sequences showed that all the cultivars formed a clade with the species of L. indica, indicating that L. indica was the maternal donor of the cultivars. Population structure and PCA analyses supported two clades of cultivars, which exhibited significant genetic differences according to the plastome dataset. The results of the nrDNA supported that all 20 cultivars were divided into three clades and most of the cultivars had at least two genetic backgrounds and higher gene flow. Our results suggest that the plastome and nrDNA sequences can be used as molecular markers for assessing the genetic variation and relationships of L. indica cultivars.
Collapse
|
26
|
Xu Y, Liu Y, Yu Z, Jia X. Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:460. [PMID: 36833387 PMCID: PMC9956581 DOI: 10.3390/genes14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.
Collapse
Affiliation(s)
| | | | | | - Xiaocheng Jia
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
27
|
Fu X, Xie DF, Zhou YY, Cheng RY, Zhang XY, Zhou SD, He XJ. Phylogeny and adaptive evolution of subgenus Rhizirideum (Amaryllidaceae, Allium) based on plastid genomes. BMC PLANT BIOLOGY 2023; 23:70. [PMID: 36726056 PMCID: PMC9890777 DOI: 10.1186/s12870-022-03993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Yu-Yang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
28
|
Zong D, Qiao Z, Zhou J, Li P, Gan P, Ren M, He C. Chloroplast genome sequence of triploid Toxicodendron vernicifluum and comparative analyses with other lacquer chloroplast genomes. BMC Genomics 2023; 24:56. [PMID: 36721120 PMCID: PMC9887819 DOI: 10.1186/s12864-023-09154-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Toxicodendron vernicifluum, belonging to the family Anacardiaceae, is an important commercial arbor species, which can provide us with the raw lacquer, an excellent adhesive and painting material used to make lacquer ware. Compared with diploid, triploid lacquer tree has a higher yield of raw lacquer and stronger resistance to stress. Triploid T. vernicifluum was a newly discovered natural triploid lacquer tree. However, the taxonomy of triploid T. vernicifluum has remained uncertain. Here, we sequenced and analyzed the complete chloroplast (cp) genome of triploid T. vernicifluum and compared it with related species of Toxicodendron genus based on chloroplast genome and SSR markers. RESULTS The plastome of triploid T. vernicifluum is 158,221 bp in length, including a pair of inverted repeats (IRs) of 26,462 bp, separated by a large single-copy region of 86,951 bp and a small single-copy region of 18,346 bp. In total, 132 genes including 87 protein-coding genes, 37 tRNA genes and 8 rRNA genes were identified in the triploid T. vernicifluum. Among these, 16 genes were duplicated in the IR regions, 14 genes contain one intron, while three genes contain two introns. After nucleotide substitutions, seven small inversions were analyzed in the chloroplast genomes, eight hotspot regions were found, which could be useful molecular genetic markers for future population genetics. Phylogenetic analyses showed that triploid T. vernicifluum was a sister to T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi. Moreover, phylogenetic clustering based on the SSR markers showed that all the samples of triploid T. vernicifluum, T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi in one group, while the samples of T. vernicifluum and T. succedaneum in another group, which is consistent with the cp genome and morphological analysis. CONCLUSIONS The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, variety identification, breeding and resource exploitation, and future genetic diversity-related studies of T. vernicifluum.
Collapse
Affiliation(s)
- Dan Zong
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Zhensheng Qiao
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jintao Zhou
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Peiling Li
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Peihua Gan
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Meirong Ren
- grid.412720.20000 0004 1761 2943Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Chengzhong He
- grid.412720.20000 0004 1761 2943Key Laboratory for Forestry Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory for Forest Genetics and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China ,grid.412720.20000 0004 1761 2943Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| |
Collapse
|
29
|
Li E, Liu K, Deng R, Gao Y, Liu X, Dong W, Zhang Z. Insights into the phylogeny and chloroplast genome evolution of Eriocaulon (Eriocaulaceae). BMC PLANT BIOLOGY 2023; 23:32. [PMID: 36639619 PMCID: PMC9840334 DOI: 10.1186/s12870-023-04034-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Eriocaulon is a wetland plant genus with important ecological value, and one of the famous taxonomically challenging groups among angiosperms, mainly due to the high intraspecific diversity and low interspecific variation in the morphological characters of species within this genus. In this study, 22 samples representing 15 Eriocaulon species from China, were sequenced and combined with published samples of Eriocaulon to test the phylogenetic resolution using the complete chloroplast genome. Furthermore, comparative analyses of the chloroplast genomes were performed to investigate the chloroplast genome evolution of Eriocaulon. RESULTS The 22 Eriocaulon chloroplast genomes and the nine published samples were proved highly similar in genome size, gene content, and order. The Eriocaulon chloroplast genomes exhibited typical quadripartite structures with lengths from 150,222 bp to 151,584 bp. Comparative analyses revealed that four mutation hotspot regions (psbK-trnS, trnE-trnT, ndhF-rpl32, and ycf1) could serve as effective molecular markers for further phylogenetic analyses and species identification of Eriocaulon species. Phylogenetic results supported Eriocaulon as a monophyletic group. The identified relationships supported the taxonomic treatment of section Heterochiton and Leucantherae, and the section Heterochiton was the first divergent group. Phylogenetic tree supported Eriocaulon was divided into five clades. The divergence times indicated that all the sections diverged in the later Miocene and most of the extant Eriocaulon species diverged in the Quaternary. The phylogeny and divergence times supported rapid radiation occurred in the evolution history of Eriocaulon. CONCLUSION Our study mostly supported the taxonomic treatment at the section level for Eriocaulon species in China and demonstrated the power of phylogenetic resolution using whole chloroplast genome sequences. Comparative analyses of the Eriocaulon chloroplast genome developed molecular markers that can help us better identify and understand the evolutionary history of Eriocaulon species in the future.
Collapse
Affiliation(s)
- Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Rongyan Deng
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yongwei Gao
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
30
|
Liu Y, Lin L, Yang D, Zou X, Zhang Z, Liu M, Lin M, Zheng Y. Comparative phylogenetic analysis of oolong tea ( Phoenix Dancong tea) using complete chloroplast genome sequences. Heliyon 2022; 8:e12557. [PMID: 36643327 PMCID: PMC9834756 DOI: 10.1016/j.heliyon.2022.e12557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Phoenix Dancong tea, a variety of oolong tea, is produced in Chaozhou, Guangdong Province, China, and is characterized by numerous hybridizations and polyploidization. To assess the genetic diversity and phylogenetic relationships among Phoenix Dancong tea and other oolong teas, an integrated circular chloroplast genome was constructed for thirty species of Phoenix Dancong tea from Chaozhou. The genome of Phoenix dancong tea is a circular molecule of 157,041-157,137 bp, with a pair of inverted repeats (26,072-26,610 bp each) separated by a large single copy (86,615-86,658 bp) and small single copy (18,264-18,284 bp). A total of 135 unique genes were encoded, including 90 protein coding genes, 37 tRNAs and 8 rRNAs. A comparative analysis with the other seven species in the oolong tea family that have been sequenced to date revealed similarities in structural organization, gene content and arrangement. Repeated sequence analysis identified 17-23 tandem repeats, 20-24 forward repeats and 25-27 palindromic repeats. Additionally, a total of 65-70 simple sequence repeats were detected, with mononucleotide repeats being the most common. Phylogenetic analyses showed that Phoenix Dancong tea and Fujian oolong tea were clustered with other cultivated Camellia sinensis in the genus Camellia of the family Theaceae, while the two oolong tea species were relatively independently cross-embedded in the genus, Camellia. Close genetic relationships were observed between Phoenix Dancong tea and other oolong teas, and the overall chloroplast genomes of oolong tea showed patterns with low variations and conserved evolution. The availability of Phoenix Dancong tea chloroplast genomes not only elucidated the relationship among oolong teas from different origins in Guangdong and Fujian but also provided valuable genetic resources to assist further molecular studies on the taxonomic and phylogenomic resolution of the genus Camellia.
Collapse
|
31
|
Lu J, Xu K, Qiu X, Liu M. Chloroplast genome characteristics of Corylopsis microcarpa H.T. Chang (Hamamelidaceae). Mitochondrial DNA B Resour 2022; 7:2067-2069. [PMCID: PMC9744204 DOI: 10.1080/23802359.2022.2152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Corylopsis microcarpa H.T. Chang 1960 is a relict species from China. The chloroplast genome of C. microcarpa is 159,438 bp in size and shows typical quadripartite structure, which includes a pair of inverted repeat regions (26,280 bp), a large single-copy region (88,185 bp), and a small single-copy region (18,693 bp). The whole chloroplast genome encodes 114 unique genes, including 80 protein-code genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Ninety-one SSRs were identified. The phylogenetic analysis revealed C. microcarpa diverged early in Corylopsis.
Collapse
Affiliation(s)
- Jinsen Lu
- College of Landscape Architecture and Arts, Jiangxi Agricultural University, Nanchang, China
| | - Kai Xu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | | | - Mu Liu
- College of Landscape Architecture and Arts, Jiangxi Agricultural University, Nanchang, China,CONTACT Mu Liu College of Landscape Architecture and Arts, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
32
|
Wang L, Li F, Wang N, Gao Y, Liu K, Zhang G, Sun J. Characterization of the Dicranostigma leptopodum chloroplast genome and comparative analysis within subfamily Papaveroideae. BMC Genomics 2022; 23:794. [PMID: 36460956 PMCID: PMC9717546 DOI: 10.1186/s12864-022-09049-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Dicranostigma leptopodum (Maxim.) Fedde is a perennial herb with bright yellow flowers, well known as "Hongmao Cao" for its medicinal properties, and is an excellent early spring flower used in urban greening. However, its molecular genomic information remains largely unknown. Here, we sequenced and analyzed the chloroplast genome of D. leptopodum to discover its genome structure, organization, and phylogenomic position within the subfamily Papaveroideae. RESULTS The chloroplast genome size of D. leptopodum was 162,942 bp, and D. leptopodum exhibited a characteristic circular quadripartite structure, with a large single-copy (LSC) region (87,565 bp), a small single-copy (SSC) region (18,759 bp) and a pair of inverted repeat (IR) regions (28,309 bp). The D. leptopodum chloroplast genome encoded 113 genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The dynamics of the genome structures, genes, IR contraction and expansion, long repeats, and single sequence repeats exhibited similarities, with slight differences observed among the eight Papaveroideae species. In addition, seven interspace regions and three coding genes displayed highly variable divergence, signifying their potential to serve as molecular markers for phylogenetic and species identification studies. Molecular evolution analyses indicated that most of the genes were undergoing purifying selection. Phylogenetic analyses revealed that D. leptopodum formed a clade with the tribe Chelidonieae. CONCLUSIONS Our study provides detailed information on the D. leptopodum chloroplast genome, expanding the available genomic resources that may be used for future evolution and genetic diversity studies.
Collapse
Affiliation(s)
- Lei Wang
- grid.453074.10000 0000 9797 0900College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Fuxing Li
- grid.453074.10000 0000 9797 0900College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Ning Wang
- grid.453074.10000 0000 9797 0900College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Yongwei Gao
- grid.66741.320000 0001 1456 856XLaboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Kangjia Liu
- grid.66741.320000 0001 1456 856XLaboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Gangmin Zhang
- grid.66741.320000 0001 1456 856XLaboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Jiahui Sun
- grid.410318.f0000 0004 0632 3409State Key Laboratory Breeding Base of Dao‑di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
33
|
Gao Y, Shen G, Yuan G, Tian Z. Comparative Analysis of Whole Chloroplast Genomes of Three Common Species of Echinochloa (Gramineae) in Paddy Fields. Int J Mol Sci 2022; 23:ijms232213864. [PMID: 36430336 PMCID: PMC9698722 DOI: 10.3390/ijms232213864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Echinochloa crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, morphologically similar at the seedling stage, are the most pernicious barnyard grass species in paddy fields worldwide. Chloroplast (cp) genomes could be conducive to their identification. In this study, we assembled the complete cp genome sequences of Echinochloa crus-galli var. crus-galli (139,856 bp), E. crus-galli var. zelayensis (139,874 bp), and E. glabrescens (139,874 bp), which exhibited a typical circular tetramerous structure, large and small single-copy regions, and a pair of inverted repeats. In Echinochloa crus-galli var. crus-galli, there were 136 simple sequence (SSRs) and 62 long (LRs) repeats, and in the other two species, 139 SSRs and 68 LRs. Each cp genome contains 92 protein-encoding genes. In Echinochloa crus-galli var. crus-galli and E. glabrescens, 321 and 1 single-nucleotide polymorphisms were detected compared to Echinochloa crus-galli var. zelayensis. IR expansion and contraction revealed small differences between the three species. The phylogenetic tree based on cp genomes demonstrated the phylogenetic relationship between ten barnyard grass species and other common Gramineae plants, showing new genetic relationships of the genus Echinochloa. This study provides valuable information on cp genomes, useful for identifying and classifying the genus Echinochloa and studying its phylogenetic relationships and evolution.
Collapse
|
34
|
A High-Quality Genome Assembly of the Mitochondrial Genome of the Oil-Tea Tree Camellia gigantocarpa (Theaceae). DIVERSITY 2022. [DOI: 10.3390/d14100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Camellia gigantocarpa is one of the oil-tea trees whose seeds can be used to extract high-quality vegetable oil. To date, there are no data on the mitochondrial genome of the oil-tea tree, in contrast to the tea-tree C. sinensis, which belongs to the same genus. In this paper, we present the first complete mitochondrial genomes of C. gigantocarpa obtained using PacBio Hi-Fi (high-fidelity) and Hi-C sequencing technologies to anchor the 970,410 bp genome assembly into a single sequence. A set of 44 protein-coding genes, 22 non-coding genes, 746 simple sequence repeats (SSRs), and more than 201 kb of repetitive sequences were annotated in the genome assembly. The high percentage of repetitive sequences in the mitochondrial genome of C. gigantocarpa (20.81%) and C.sinensis (22.15%, tea tree) compared to Arabidopsis thaliana (4.96%) significantly increased the mitogenome size in the genus Camellia. The comparison of the mitochondrial genomes between C. gigantocarpa and C. sinensis revealed genes exhibit high variance in gene order and low substitution rate within the genus Camellia. Information on the mitochondrial genome provides a better understanding of the structure and evolution of the genome in Camellia and may contribute to further study of the after-ripening process of oil-tea trees.
Collapse
|
35
|
Characterization and Comparative Analysis of Chloroplast Genomes in Five Uncaria Species Endemic to China. Int J Mol Sci 2022; 23:ijms231911617. [PMID: 36232915 PMCID: PMC9569570 DOI: 10.3390/ijms231911617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Uncaria, a perennial vine from the Rubiaceae family, is a typical Chinese traditional medicine. Currently, uncertainty exists over the Uncaria genus’ evolutionary relationships and germplasm identification. The complete chloroplast genomes of four Uncaria species mentioned in the Chinese Pharmacopoeia and Uncaria scandens (an easily confused counterfeit) were sequenced and annotated. The findings demonstrated that the whole chloroplast genome of Uncaria genus is 153,780–155,138 bp in full length, encoding a total of 128–131 genes, containing 83–86 protein-coding genes, eight rRNAs and 37 tRNAs. These regions, which include eleven highly variable loci and 31–49 SSRs, can be used to create significant molecular markers for the Uncaria genus. The phylogenetic tree was constructed according to protein-coding genes and the whole chloroplast genome sequences of five Uncaria species using four methods. The topology of the two phylogenetic trees showed no difference. The sequences of U. rhynchophylla and U. scandens are clustered in one group, while the U. hirsuta and U. macrophylla are clustered in another group. U. sessilifructus is clustered together with the above two small clades. New insights on the relationship were revealed via phylogenetic research in five Uncaria species. This study will provide a theoretical basis for identifying U. rhynchophylla and its counterfeits, as well as the species of the Uncaria genus. This research provides the initial chloroplast genome report of Uncaria, contributes to elucidating the chloroplast genome evolution of Uncaria in China.
Collapse
|
36
|
Feng JL, Wu LW, Wang Q, Pan YJ, Li BL, Lin YL, Yao H. Comparison Analysis Based on Complete Chloroplast Genomes and Insights into Plastid Phylogenomic of Four Iris Species. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2194021. [PMID: 35937412 PMCID: PMC9348943 DOI: 10.1155/2022/2194021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Iris species, commonly known as rainbow flowers because of their attractive flowers, are extensively grown in landscape gardens. A few species, including Belamcanda chinensis, the synonym of I. domestica and I. tectorum, are known for their medicinal properties. However, research on the genomes and evolutionary relationships of Iris species is scarce. In the current study, the complete chloroplast (CP) genomes of I. tectorum, I. dichotoma, I. japonica, and I. domestica were sequenced and compared for their identification and relationship. The CP genomes of the four Iris species were circular quadripartite with similar lengths, GC contents, and codon usages. A total of 113 specific genes were annotated, including the ycf1 pseudogene in all species and rps19 in I. japonica alone. All the species had mononucleotide (A/T) simple sequence repeats (SSRs) and long forward and palindromic repeats in their genomes. A comparison of the CP genomes based on mVISTA and nucleotide diversity (Pi) identified three highly variable regions (ndhF-rpl32, rps15-ycf1, and rpl16). Phylogenetic analysis based on the complete CP genomes concluded that I. tectorum is a sister of I. japonica, and the subgenus Pardanthopsis with several I. domestica clustered into one branch is a sister of I. dichotoma. These findings confirm the feasibility of superbarcodes (complete CP genomes) for Iris species authentication and could serve as a resource for further research on Iris phylogeny.
Collapse
Affiliation(s)
- Jing-lu Feng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li-wei Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Qing Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yun-jia Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bao-li Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-lin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
37
|
Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ. Application of chloroplast genome in the identification of Traditional Chinese Medicine Viola philippica. BMC Genomics 2022; 23:540. [PMID: 35896957 PMCID: PMC9327190 DOI: 10.1186/s12864-022-08727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.
Collapse
Affiliation(s)
- Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shao-Qiu Xie
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
38
|
Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, Jiang C, Wang Z, Jiang X, Zhang S, Qian Y, Tai Y, Wang Y, Wang H, Xie D, Gao L, Xia T. Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:117-133. [PMID: 35437852 PMCID: PMC9541279 DOI: 10.1111/tpj.15782] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 05/18/2023]
Abstract
Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.
Collapse
Affiliation(s)
- Shengbo Yao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yajun Liu
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yue Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Changjuan Jiang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Zhihui Wang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Shuxiang Zhang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yumei Qian
- School of Biological and Food EngineeringSuzhou UniversitySuzhou234000AnhuiChina
| | - Yuling Tai
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yunsheng Wang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Haiyan Wang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - De‐Yu Xie
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Liping Gao
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| |
Collapse
|
39
|
Zhang JY, Liao M, Cheng YH, Feng Y, Ju WB, Deng HN, Li X, Plenković-Moraj A, Xu B. Comparative Chloroplast Genomics of Seven Endangered Cypripedium Species and Phylogenetic Relationships of Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:911702. [PMID: 35812969 PMCID: PMC9257239 DOI: 10.3389/fpls.2022.911702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The species in the genus Cypripedium (Orchidaceae) are considered endangered, mainly distributed in the temperate regions of the Northern Hemisphere, with high ornamental and economic value. Despite previous extensive studies based on both morphology and molecular data, species and sections relationships within Cypripedium remain controversial. Here, we employed two newly generated Cypripedium chloroplast genomes with five other published genomes to elucidate their genomic characteristics. The two genomes were 162,773-207,142 bp in length and contained 128-130 genes, including 82-84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. We identified 2,192 simple sequence repeats, 786 large repeat sequences, and 7,929 variable loci. The increase of repeat sequences (simple sequence repeats and large repeat sequences) causes a significant amplification in the chloroplast genome size of Cypripedium. The expansion of the IR region led to the pseudogenization or loss of genes in the SSC region. In addition, we identified 12 highly polymorphic loci (Pi > 0.09) suitable for inferring the phylogeny of Cypripedium species. Based on data sets of whole chloroplast genomes (IRa excluded) and protein-coding sequences, a well-supported phylogenetic tree was reconstructed, strongly supporting the five subfamilies of Orchidaceae and the genus Cypripedium as monophyletic taxa. Our findings also supported that C. palangshanense belonged to sect. Palangshanensia rather than sect. Retinervia. This study also enriched the genomic resources of Cypripedium, which may help to promote the conservation efforts of these endangered species.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Min Liao
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Hong Cheng
- Wolong National Natural Reserve Administration Bureau, Sichuan, China
| | - Yu Feng
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wen-Bing Ju
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng-Ning Deng
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiong Li
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Bo Xu
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Zhou T, Wang N, Wang Y, Zhang XL, Li BG, Li W, Su JJ, Wang CX, Zhang A, Ma XF, Li ZH. Nucleotide Evolution, Domestication Selection, and Genetic Relationships of Chloroplast Genomes in the Economically Important Crop Genus Gossypium. FRONTIERS IN PLANT SCIENCE 2022; 13:873788. [PMID: 35498673 PMCID: PMC9051515 DOI: 10.3389/fpls.2022.873788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum (upland cotton) is one of the most economically important crops worldwide, which has experienced the long terms of evolution and domestication process from wild species to cultivated accessions. However, nucleotide evolution, domestication selection, and the genetic relationship of cotton species remain largely to be studied. In this study, we used chloroplast genome sequences to determine the evolutionary rate, domestication selection, and genetic relationships of 72 cotton genotypes (36 cultivated cotton accessions, seven semi-wild races of G. hirsutum, and 29 wild species). Evolutionary analysis showed that the cultivated tetraploid cotton genotypes clustered into a single clade, which also formed a larger lineage with the semi-wild races. Substitution rate analysis demonstrated that the rates of nucleotide substitution and indel variation were higher for the wild species than the semi-wild and cultivated tetraploid lineages. Selection pressure analysis showed that the wild species might have experienced greater selection pressure, whereas the cultivated cotton genotypes underwent artificial and domestication selection. Population clustering analysis indicated that the cultivated cotton accessions and semi-wild races have existed the obviously genetic differentiation. The nucleotide diversity was higher in the semi-wild races compared with the cultivated genotypes. In addition, genetic introgression and gene flow occurred between the cultivated tetraploid cotton and semi-wild genotypes, but mainly via historical rather than contemporary gene flow. These results provide novel molecular mechanisms insights into the evolution and domestication of economically important crop cotton species.
Collapse
Affiliation(s)
- Tong Zhou
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Ning Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Yuan Wang
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Xian-Liang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jun-Ji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Cai-Xiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ai Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhong-Hu Li
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
41
|
Wang Z, Cai Q, Wang Y, Li M, Wang C, Wang Z, Jiao C, Xu C, Wang H, Zhang Z. Comparative Analysis of Codon Bias in the Chloroplast Genomes of Theaceae Species. Front Genet 2022; 13:824610. [PMID: 35360853 PMCID: PMC8961065 DOI: 10.3389/fgene.2022.824610] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Theaceae species are dicotyledonous angiosperms with extremely high ornamental and economic value. The chloroplast genome is traditionally used to study species evolution, expression of chloroplast genes and chloroplast transformation. Codon usage bias (CUB) analysis is beneficial for investigations of evolutionary relationships and can be used to improve gene expression efficiency in genetic transformation research. However, there are relatively few systematic studies of the CUB in the chloroplast genomes of Theaceae species. In this study, CUB and nucleotide compositions parameters were determined by the scripts written in the Perl language, CodonW 1.4.2, CU.Win2000, RStudio and SPSS 23.0. The chloroplast genome data of 40 Theaceae species were obtained to analyse the codon usage (CU) characteristics of the coding regions and the influence of the source of variation on CUB. To explore the relationship between the CUB and gene expression levels in these 40 Theaceae plastomes, the synonymous codon usage order (SCUO) and measure independent of length and composition (MILC) values were determined. Finally, phylogenetic analysis revealed the genetic evolutionary relationships among these Theaceae species. Our results showed that based on the chloroplast genomes of these 40 Theaceae species, the CUB was for codons containing A/T bases and those that ended with A/T bases. Moreover, there was great commonality in the CUB of the Theaceae species according to comparative analysis of relative synonymous codon usage (RSCU) and relative frequency of synonymous codon (RFSC): these species had 29 identical codons with bias (RSCU > 1), and there were 19 identical high-frequency codons. The CUB of Theaceae species is mainly affected by natural selection. The SCUO value of the 40 Theaceae species was 0.23 or 0.24, and the chloroplast gene expression level was moderate, according to MILC values. Additionally, we observed a positive correlation between the SCUO and MILC values, which indicated that CUB might affect gene expression. Furthermore, the phylogenetic analysis showed that the evolutionary relationships in these 40 Theaceae species were relatively conserved. A systematic study on the CUB and expression of Theaceae species provides further evidence for their evolution and phylogeny.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Zhaoliang Zhang,
| |
Collapse
|
42
|
Li Q, Xia M, Yu J, Chen S, Zhang F. Plastid genome insight to the taxonomic problem for Aconitum pendulum and A. flavum (Ranunculaceae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00969-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Guzmán-Díaz S, Núñez FAA, Veltjen E, Asselman P, Larridon I, Samain MS. Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030448. [PMID: 35161429 PMCID: PMC8838774 DOI: 10.3390/plants11030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
Collapse
Affiliation(s)
- Salvador Guzmán-Díaz
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Correspondence:
| | - Fabián Augusto Aldaba Núñez
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
| | - Emily Veltjen
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Ghent University Botanical Garden, Ghent University, 9000 Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| | - Isabel Larridon
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| |
Collapse
|
44
|
Danzeng Q, Suonan R, Li Q, Nima C. Characterization of the complete plastid genome of of Veronica eriogyne H. Winkl., a Tibetan medicinal herb. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3402-3403. [PMID: 34790875 PMCID: PMC8592608 DOI: 10.1080/23802359.2021.1998802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Veronica eriogyne H. Winkl.(Plantaginaceae) is a perennial herb with high medicinal value. To better understand the molecular genetics and evolutionary of V. eriogyne, its complete plastid genome was sequenced and annotated. The assembled chloroplast genome is a circular 151,083 bp sequence, consisting of a 82,302 bp large single copy region (LSC) and a 17,449 bp small single copy region (SSC), which were flanked by a pair of 25,666 bp inverted repeats (IRs). The GC content of the chloroplast genome is 38.03%. Moreover, a total of 134 functional genes were annotated, including 88 protein-coding, 38 tRNA, and 8 rRNA genes. Phylogenetic analysis showed that V. eriogyne has close relationship with V. persica Poi. The current study provides important information for further genetic studies on Plantaginacea.
Collapse
Affiliation(s)
- Qupei Danzeng
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Renqian Suonan
- Tibetan Medical Hospital of Qinghai Province, Xining, P. R. China
| | - Qien Li
- Beijing University of Chinese Medicine, Beijing, P. R. China.,Tibetan Medicine Research Center, Tibetan Medical College, Qinghai University, Xining, P. R. China
| | - Ciren Nima
- Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|