1
|
El Mouzan M, Al Quorain A, Assiri A, Almasoud A, Alsaleem B, Aladsani A, Al Sarkhy A. Gut fungal profile in new onset treatment-naïve ulcerative colitis in Saudi children. Saudi J Gastroenterol 2025; 31:28-33. [PMID: 39523762 DOI: 10.4103/sjg.sjg_221_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although the role of fungi in gut inflammation in IBD has been suggested, data are still limited in ulcerative colitis (UC). Our aim was to describe the gut fungal profile in a pediatric UC in Saudi Arabia. METHODS Fecal samples from children with UC and control samples provided by healthy school children were collected. The fungal DNA was analyzed using Shotgun metagenomic procedures. Shannon alpha diversity, beta diversity, differential abundance, random forest classification algorithm, and area under the curve were analyzed. RESULTS There were 20 children with UC and 20 healthy school children. The median age and range were 13 (0.5-21) and 13 (7-16) years for children with UC and controls, respectively. Male subjects were 40% and 35% for UC and controls, respectively. At diagnosis, the UC extent was E4 (38%); E3 (25%); E2 (37%) and 35% had a PUCAI ≥65. The reduction of alpha diversity and the significant dissimilarity in children with UC were similar to those of most published studies. However, a significant difference was found at all taxa levels with a remarkable enhancement of Candida genus and Saccharomyces cerevisiae in children with UC. Three species were identified as fungal signatures and an area under the curve of 98.4% (95.1-100% CI), indicating an association with UC that has not been reported thus far. CONCLUSION We report significant fungal dysbiosis in children with UC consistent with published literature. However, the report of potential fungal signature and a strong association with UC deserves further studies with a bigger sample size from other populations.
Collapse
Affiliation(s)
- Mohammad El Mouzan
- Department of Pediatrics (Gastroenterology Unit), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al Quorain
- Department of Internal Medicine, King Fahd Hospital of the University, Al Khobar, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Asaad Assiri
- Department of Pediatrics (Gastroenterology Unit), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Almasoud
- Department of Pediatrics (Gastroenterology Unit), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Badr Alsaleem
- Department of Pediatric Gastroenterology, King Fahad Medical City, Intestinal Failure Program, Riyadh, Saudi Arabia
| | - Ahmed Aladsani
- Department of Internal Medicine, King Fahd Hospital of the University, Al Khobar, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Department of Pediatrics (Gastroenterology Unit), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Kim J, Lee EJ, Lee KE, Nho YH, Ryu J, Kim SY, Yoo JK, Kang S, Seo SW. Docsubty: FLALipid extract derived from newly isolated Rhodotorula toruloides LAB-07 for cosmetic applications. Comput Struct Biotechnol J 2023; 21:2009-2017. [PMID: 36968014 PMCID: PMC10036517 DOI: 10.1016/j.csbj.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient.
Collapse
|
3
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
4
|
Papaioannou IA, Dutreux F, Peltier FA, Maekawa H, Delhomme N, Bardhan A, Friedrich A, Schacherer J, Knop M. Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biol 2021; 22:303. [PMID: 34732243 PMCID: PMC8567612 DOI: 10.1186/s13059-021-02521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. RESULTS We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. CONCLUSIONS Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
Collapse
Affiliation(s)
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - France A. Peltier
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Hiromi Maekawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Current affiliation: Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Amit Bardhan
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|