1
|
Foix L, Pla M, Martín-Mur B, Esteve-Codina A, Nadal A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. Int J Mol Sci 2024; 25:13099. [PMID: 39684809 DOI: 10.3390/ijms252313099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in complex regulatory pathways, there is crosstalk among different signaling pathways, involving noncoding RNAs in the natural response to pathogen attack. Here, we used Prunus persica, PpPep2 and a miRNA-Seq approach to show for the first time that Peps regulate, in parallel with a set of protein-coding genes, a set of plant miRNAs (~15%). Some PpPep2-regulated miRNAs have been described to participate in the response to pathogens in various plant-pathogen systems. In addition, numerous predicted target mRNAs of PpPep2-regulated miRNAs are themselves regulated by PpPep2 in peach trees. As an example, peach miRNA156 and miRNA390 probably have a role in plant development regulation under stress conditions, while others, such as miRNA482 and miRNA395, would be involved in the regulation of resistance (R) genes and sulfate-mediated protection against oxygen free radicals, respectively. This adds to the established role of Peps in triggering plant defense systems by incorporating the miRNA regulatory network and to the possible use of Peps as sustainable phytosanitary products.
Collapse
Affiliation(s)
- Laura Foix
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Beatriz Martín-Mur
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
2
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
3
|
Bleker C, Ramšak Ž, Bittner A, Podpečan V, Zagorščak M, Wurzinger B, Baebler Š, Petek M, Križnik M, van Dieren A, Gruber J, Afjehi-Sadat L, Weckwerth W, Županič A, Teige M, Vothknecht UC, Gruden K. Stress Knowledge Map: A knowledge graph resource for systems biology analysis of plant stress responses. PLANT COMMUNICATIONS 2024; 5:100920. [PMID: 38616489 PMCID: PMC11211517 DOI: 10.1016/j.xplc.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.
Collapse
Affiliation(s)
- Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia.
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Andras Bittner
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Vid Podpečan
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Bernhard Wurzinger
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Annelotte van Dieren
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Juliane Gruber
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Leila Afjehi-Sadat
- Mass Spectrometry Unit, Core Facility Shared Services, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anže Županič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Markus Teige
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ute C Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Istomina EA, Korostyleva TV, Kovtun AS, Slezina MP, Odintsova TI. Transcriptome-Wide Identification and Expression Analysis of Genes Encoding Defense-Related Peptides of Filipendula ulmaria in Response to Bipolaris sorokiniana Infection. J Fungi (Basel) 2024; 10:258. [PMID: 38667929 PMCID: PMC11050963 DOI: 10.3390/jof10040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.
Collapse
Affiliation(s)
- Ekaterina A. Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana V. Korostyleva
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Alexey S. Kovtun
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia;
| | - Marina P. Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (E.A.I.); (T.V.K.); (M.P.S.)
| |
Collapse
|
5
|
Abstract
Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (a) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (b) the need to develop suitable formulations to increase their shelf life and methods of application, (c) the selection of compounds with acceptable toxicological profiles, and (d) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology, Plant Pathology-CIDSAV, University of Girona, Girona, Spain;
| |
Collapse
|
6
|
Montesinos L, Baró A, Gascón B, Montesinos E. Bactericidal and plant defense elicitation activities of Eucalyptus oil decrease the severity of infections by Xylella fastidiosa on almond plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1122218. [PMID: 37008467 PMCID: PMC10050747 DOI: 10.3389/fpls.2023.1122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The activity of Eucalyptus essential oil against eleven strains pertaining to six species of plant pathogenic bacteria was studied using growth inhibition and contact assays. All strains were susceptible to the formulation EGL2, and Xylella fastidiosa subspecies and Xanthomonas fragariae were the most sensitive. The bactericidal effect was strong causing 4.5 to 6.0 log reductions in survival in 30 min at concentrations in the range of 0.75 to 15.0 μl/ml depending on the bacteria tested. Transmission electron microscopy of the formulation EGL2 against the three X. fastidiosa subspecies studied allowed the observation of a strong lytic effect on bacterial cells. In addition, the preventive spray application of EGL2 to potted pear plants subsequently inoculated with Erwinia amylovora significantly decreased the severity of infections. Almond plants treated by endotherapy or soil drenching, and then inoculated with X. fastidiosa showed a significant decrease in disease severity as well as in the levels of the pathogen, depending on the strategy used (endotherapy/soil drenching, preventive/curative). The treatment by endotherapy in almond plants induced the expression of several genes involved in plant defense. It was concluded that the reduction of infections by the Eucalyptus oil treatments was due to the combination of its bactericidal and plant defense induction activities.
Collapse
|
7
|
Synthetic Peptides against Plant Pathogenic Bacteria. Microorganisms 2022; 10:microorganisms10091784. [PMID: 36144386 PMCID: PMC9504393 DOI: 10.3390/microorganisms10091784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The control of plant diseases caused by bacteria that seriously compromise crop productivity around the world is still one of the most important challenges in food security. Integrated approaches for disease control generally lack plant protection products with high efficacy and low environmental and health adverse effects. Functional peptides, either from natural sources or synthetic, are considered as novel candidates to develop biopesticides. Synthetic peptides can be obtained based on the structure of natural compounds or de novo designed, considering the features of antimicrobial peptides. The advantage of this approach is that analogues can be conveniently prepared, enabling the identification of sequences with improved biological properties. Several peptide libraries have been designed and synthetized, and the best sequences showed strong bactericidal activity against important plant pathogenic bacteria, with a good profile of biodegradability and low toxicity. Among these sequences, there are bacteriolytic or antibiofilm peptides that work against the target bacteria, plant defense elicitor peptides, and multifunctional peptides that display several of these properties. Here, we report the research performed by our groups during the last twenty years, as well as our ongoing work. We also highlight those peptides that can be used as candidates to develop novel biopesticides, and the main challenges and prospects.
Collapse
|
8
|
Wang A, Guo J, Wang S, Zhang Y, Lu F, Duan J, Liu Z, Ji W. BoPEP4, a C-Terminally Encoded Plant Elicitor Peptide from Broccoli, Plays a Role in Salinity Stress Tolerance. Int J Mol Sci 2022; 23:ijms23063090. [PMID: 35328511 PMCID: PMC8952307 DOI: 10.3390/ijms23063090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Plant peptide hormones play various roles in plant development, pathogen defense and abiotic stress tolerance. Plant elicitor peptides (Peps) are a type of damage-associated molecular pattern (DAMP) derived from precursor protein PROPEPs. In this study, we identified nine PROPEP genes in the broccoli genome. qRT-PCR analysis indicated that the expression levels of BoPROPEPs were induced by NaCl, ABA, heat, SA and P. syringae DC3000 treatments. In order to study the functions of Peps in salinity stress response, we synthesized BoPep4 peptide, the precursor gene of which, BoPROPEP4, was significantly responsive to NaCl treatment, and carried out a salinity stress assay by exogenous application of BoPep4 in broccoli sprouts. The results showed that the application of 100 nM BoPep4 enhanced tolerance to 200 mM NaCl in broccoli by reducing the Na+/K+ ratio and promoting accumulation of wax and cutin in leaves. Further RNA-seq analysis identified 663 differentially expressed genes (DGEs) under combined treatment with BoPep4 and NaCl compared with NaCl treatment, as well as 1776 genes differentially expressed specifically upon BoPep4 and NaCl treatment. GO and KEGG analyses of these DEGs indicated that most genes were enriched in auxin and ABA signal transduction, as well as wax and cutin biosynthesis. Collectively, this study shows that there was crosstalk between peptide hormone BoPep4 signaling and some well-established signaling pathways under salinity stress in broccoli sprouts, which implies an essential function of BoPep4 in salinity stress defense.
Collapse
|