Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits.
Proc Natl Acad Sci U S A 2022;
119:2115753118. [PMID:
34969848 PMCID:
PMC8740713 DOI:
10.1073/pnas.2115753118]
[Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
Migratory locusts display striking phenotypical plasticity. Gregarious locusts at high density can migrate long distances and cause huge economic losses of crops. By contrast, solitary locusts at low density have limited ability in long-distance flight. However, the mechanisms underlying such flight capacity variation are poorly understood. Here, we found that the flight muscle of solitary locusts has a higher catabolic capacity that is associated with greater reactive oxygen species (ROS) generation during high-velocity flights. By contrast, a relatively lower catabolic capacity in gregarious locusts is associated with lower ROS generation during long-distance flights. This finding uncovers the metabolic mechanism of locust flight trait alteration in response to density changes and enhances our understanding of the biological processes enabling locust migration.
Flight ability is essential for the enormous diversity and evolutionary success of insects. The migratory locusts exhibit flight capacity plasticity in gregarious and solitary individuals closely linked with different density experiences. However, the differential mechanisms underlying flight traits of locusts are largely unexplored. Here, we investigated the variation of flight capacity by using behavioral, physiological, and multiomics approaches. Behavioral assays showed that solitary locusts possess high initial flight speeds and short-term flight, whereas gregarious locusts can fly for a longer distance at a relatively lower speed. Metabolome–transcriptome analysis revealed that solitary locusts have more active flight muscle energy metabolism than gregarious locusts, whereas gregarious locusts show less evidence of reactive oxygen species production during flight. The repression of metabolic activity by RNA interference markedly reduced the initial flight speed of solitary locusts. Elevating the oxidative stress by paraquat injection remarkably inhibited the long-distance flight of gregarious locusts. In respective crowding and isolation treatments, energy metabolic profiles and flight traits of solitary and gregarious locusts were reversed, indicating that the differentiation of flight capacity depended on density and can be reshaped rapidly. The density-dependent flight traits of locusts were attributed to the plasticity of energy metabolism and degree of oxidative stress production but not energy storage. The findings provided insights into the mechanism underlying the trade-off between velocity and sustainability in animal locomotion and movement.
Collapse