1
|
Wang B, Chang J, Mapuranga J, Zhao C, Wu Y, Qi Y, Yuan S, Zhang N, Yang W. Effector Pt9226 from Puccinia triticina Presents a Virulence Role in Wheat Line TcLr15. Microorganisms 2024; 12:1723. [PMID: 39203565 PMCID: PMC11357290 DOI: 10.3390/microorganisms12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Effectors are considered to be virulence factors secreted by pathogens, which play an important role during host-pathogen interactions. In this study, the candidate effector Pt9226 was cloned from genomic DNA of Puccinia triticina (Pt) pathotype THTT, and there were six exons and five introns in the 877 bp sequence, with the corresponding open reading frame of 447 bp in length, encoding a protein of 148 amino acids. There was only one polymorphic locus of I142V among the six Pt pathotypes analyzed. Bioinformatics analysis showed that Pt9226 had 96.46% homology with the hypothetical putative protein PTTG_26361 (OAV96349.1) in the Pt pathotype BBBD. RT-qPCR analyses showed that the expression of Pt9226 was induced after Pt inoculation, with a peak at 36 hpi, which was 20 times higher than the initial expression at 0 hpi, and another high expression was observed at 96 hpi. No secretory function was detected for the Pt9226-predicted signal peptide. The subcellular localization of Pt9226Δsp-GFP was found to be multiple, localized in the tobacco leaves. Pt9226 could inhibit programmed cell death (PCD) induced by BAX/INF1 in tobacco as well as DC3000-induced PCD in wheat. The transient expression of Pt9226 in 26 wheat near-isogenic lines (NILs) by a bacterial type III secretion system of Pseudomonas fluorescens EtHAn suppressed callose accumulation triggered by Ethan in wheat near-isogenic lines TcLr15, TcLr25, and TcLr30, and it also suppressed the ROS accumulation in TcLr15. RT-qPCR analysis showed that the expression of genes coded for pathogenesis-related protein TaPR1, TaPR2, and thaumatin-like protein TaTLP1, were suppressed, while the expression of PtEF-1α was induced, with 1.6 times at 72 h post inoculation, and TaSOD was induced only at 24 and 48 h compared with the control, when the Pt pathotype THTT was inoculated on a transient expression of Pt9226 in wheat TcLr15. Combining all above, Pt9226 acts as a virulence effector in the interaction between the Pt pathotype THTT and wheat.
Collapse
Affiliation(s)
- Bingxue Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Jiaying Chang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Johannes Mapuranga
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Chenguang Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Yanhui Wu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Yue Qi
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengliang Yuan
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Na Zhang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| | - Wenxiang Yang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071000, China; (B.W.); (J.C.); (J.M.); (C.Z.); (Y.W.); (Y.Q.); (S.Y.)
| |
Collapse
|
2
|
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, Delmotte F. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew. THE NEW PHYTOLOGIST 2024; 243:1490-1505. [PMID: 39021210 DOI: 10.1111/nph.19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Collapse
Affiliation(s)
- Manon Paineau
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Pere Mestre
- INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Isabelle D Mazet
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Carole Couture
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Fabrice Legeai
- INRAE, IGEPP, F-35650, Le-Rheu, France
- INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
- Genome Center, University of California Davis, Davis, 95616, CA, USA
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| |
Collapse
|
3
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
4
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
5
|
Abraham LN, Croll D. Genome-wide expression QTL mapping reveals the highly dynamic regulatory landscape of a major wheat pathogen. BMC Biol 2023; 21:263. [PMID: 37981685 PMCID: PMC10658818 DOI: 10.1186/s12915-023-01763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly understood. RESULTS We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and downstream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with comparatively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring genes with implications for the trait architecture. CONCLUSIONS Overall, our study provides extensive evidence that single populations segregate large-scale regulatory variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Present address: Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Dutta A, McDonald BA, Croll D. Combined reference-free and multi-reference based GWAS uncover cryptic variation underlying rapid adaptation in a fungal plant pathogen. PLoS Pathog 2023; 19:e1011801. [PMID: 37972199 PMCID: PMC10688896 DOI: 10.1371/journal.ppat.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Microbial pathogens often harbor substantial functional diversity driven by structural genetic variation. Rapid adaptation from such standing variation threatens global food security and human health. Genome-wide association studies (GWAS) provide a powerful approach to identify genetic variants underlying recent pathogen adaptation. However, the reliance on single reference genomes and single nucleotide polymorphisms (SNPs) obscures the true extent of adaptive genetic variation. Here, we show quantitatively how a combination of multiple reference genomes and reference-free approaches captures substantially more relevant genetic variation compared to single reference mapping. We performed reference-genome based association mapping across 19 reference-quality genomes covering the diversity of the species. We contrasted the results with a reference-free (i.e., k-mer) approach using raw whole-genome sequencing data in a panel of 145 strains collected across the global distribution range of the fungal wheat pathogen Zymoseptoria tritici. We mapped the genetic architecture of 49 life history traits including virulence, reproduction and growth in multiple stressful environments. The inclusion of additional reference genome SNP datasets provides a nearly linear increase in additional loci mapped through GWAS. Variants detected through the k-mer approach explained a higher proportion of phenotypic variation than a reference genome-based approach and revealed functionally confirmed loci that classic GWAS approaches failed to map. The power of GWAS in microbial pathogens can be significantly enhanced by comprehensively capturing structural genetic variation. Our approach is generalizable to a large number of species and will uncover novel mechanisms driving rapid adaptation of pathogens.
Collapse
Affiliation(s)
- Anik Dutta
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Uddin MJ, Huang X, Lu X, Li S. Increased Conidia Production and Germination In Vitro Correlate with Virulence Enhancement in Fusarium oxysporum f. sp. cucumerinum. J Fungi (Basel) 2023; 9:847. [PMID: 37623618 PMCID: PMC10455488 DOI: 10.3390/jof9080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Cucumber plants commonly suffer from Fusarium wilt disease, which is caused by Fusarium oxysporum f. sp. cucumerinum (Foc). Although resistant cultivars assist with Fusarium wilt disease control, enhancement of the virulence of Foc has been identified after monoculture of wilt-resistant cultivars. To investigate the biological characteristics that contribute to the virulence evolution of Foc, a wildtype strain foc-3b (WT) and its virulence-enhanced variant Ra-4 (InVir) were compared in terms of their growth, reproduction, stress tolerance, and colonization in cucumber plants. The InVir strain showed similar culture characteristics on PDA media to the WT strain but produced significantly more conidia (>two fold), with a distinctly higher germination rate (>four fold) than the WT strain. The colony diameter of the InVir strain increased faster than the WT strain on PDA plates; however, the mycelia dry weight of the InVir was significantly lower (<70%) than that of the WT harvested from PDB. The InVir strain exhibited a significant increase in tolerance to osmolality (1 M NaCl, 1 M KCl, etc.). The GFP-labeled InVir strain propagated in the cucumber vascular faster than the WT strain. These results suggest that increased conidia production and germination in vitro may correlate with virulence enhancement in Fusarium oxysporum f. sp. cucumerinum. This study will provide an insight into its virulence evolution and help us understand the mechanisms underlying the evolutionary biology of F. oxysporum.
Collapse
Affiliation(s)
- Md. Jamal Uddin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
- Crops Division, Bangladesh Agricultural Research Council (BARC), Dhaka 1215, Bangladesh
| | - Xiaoqing Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| | - Xiaohong Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| |
Collapse
|
8
|
Huang S, Li H, Ma L, Liu R, Li Y, Wang H, Lu X, Huang X, Wu X, Liu X. Insertion sequence contributes to the evolution and environmental adaptation of Acidithiobacillus. BMC Genomics 2023; 24:282. [PMID: 37231368 DOI: 10.1186/s12864-023-09372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The genus Acidithiobacillus has been widely concerned due to its superior survival and oxidation ability in acid mine drainage (AMD). However, the contribution of insertion sequence (IS) to their biological evolution and environmental adaptation is very limited. ISs are the simplest kinds of mobile genetic elements (MGEs), capable of interrupting genes, operons, or regulating the expression of genes through transposition activity. ISs could be classified into different families with their own members, possessing different copies. RESULTS In this study, the distribution and evolution of ISs, as well as the functions of the genes around ISs in 36 Acidithiobacillus genomes, were analyzed. The results showed that 248 members belonging to 23 IS families with a total of 10,652 copies were identified within the target genomes. The IS families and copy numbers among each species were significantly different, indicating that the IS distribution of Acidithiobacillus were not even. A. ferrooxidans had 166 IS members, which may develop more gene transposition strategies compared with other Acidithiobacillus spp. What's more, A. thiooxidans harbored the most IS copies, suggesting that their ISs were the most active and more likely to transpose. The ISs clustered in the phylogenetic tree approximately according to the family, which were mostly different from the evolutionary trends of their host genomes. Thus, it was suggested that the recent activity of ISs of Acidithiobacillus was not only determined by their genetic characteristics, but related with the environmental pressure. In addition, many ISs especially Tn3 and IS110 families were inserted around the regions whose functions were As/Hg/Cu/Co/Zn/Cd translocation and sulfur oxidation, implying that ISs could improve the adaptive capacities of Acidithiobacillus to the extremely acidic environment by enhancing their resistance to heavy metals and utilization of sulfur. CONCLUSIONS This study provided the genomic evidence for the contribution of IS to evolution and adaptation of Acidithiobacillus, opening novel sights into the genome plasticity of those acidophiles.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Huiying Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Yiran Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Hongmei Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xiaolu Lu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| |
Collapse
|
9
|
Bellah H, Seiler NF, Croll D. Divergent Outcomes of Direct Conspecific Pathogen Strain Interaction and Plant Co-Infection Suggest Consequences for Disease Dynamics. Microbiol Spectr 2023; 11:e0444322. [PMID: 36749120 PMCID: PMC10101009 DOI: 10.1128/spectrum.04443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Plant diseases are often caused by co-infections of multiple pathogens with the potential to aggravate disease severity. In genetically diverse pathogen species, co-infections can also be caused by multiple strains of the same species. However, the outcome of such mixed infections by different conspecific genotypes is poorly understood. The interaction among pathogen strains with complex lifestyles outside and inside of the host are likely shaped by diverse traits, including metabolic capacity and the ability to overcome host immune responses. To disentangle competitive outcomes among pathogen strains, we investigated the fungal wheat pathogen Zymoseptoria tritici. The pathogen infects wheat leaves in complex strain assemblies, and highly diverse populations persist between growing seasons. We investigated a set of 14 genetically different strains collected from the same field to assess both competitive outcomes under culture conditions and on the host. Growth kinetics of cocultured strains (~100 pairs) significantly deviated from single strain expectations, indicating competitive exclusion depending on the strain genotype. We found similarly complex outcomes of lesion development on plant leaves following co-infections by the same pairs of strains. While some pairings suppressed overall damage to the host, other combinations exceeded expectations of lesion development based on single strain outcomes. Strain competition outcomes in the absence of the host were poor predictors of outcomes on the host, suggesting that the interaction with the plant immune system adds significant complexity. Intraspecific co-infection dynamics likely make important contributions to disease outcomes in the wild. IMPORTANCE Plants are often attacked by a multitude of pathogens simultaneously, and different species can facilitate or constrain the colonization by others. To what extent simultaneous colonization by different strains of the same species matters, remains unclear. We focused on intra-specific interactions between strains of the major fungal wheat pathogen Zymoseptoria tritici. The pathogen persists in the environment before infecting plant leaves early in the growing season. Leaves are typically colonized by a multitude of strains. Strains cultured in pairs without host were growing differently compared to strains cultured alone. Wheat leaves infected either with single or pairs of strains, we found also highly variable outcomes. Interactions between strains outside of the host were only poorly explaining how strains would interact when on the host, suggesting that pathogen strains engage in complex interactions dependent on the environment. Better understanding within-species interactions will improve our ability to manage crop infections.
Collapse
Affiliation(s)
- Hadjer Bellah
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nicolas F. Seiler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Cheng Z, Lv X, Duan C, Zhu H, Wang J, Xu Z, Yin H, Zhou X, Li M, Hao Z, Li F, Li X, Weng J. Pathogenicity Variation in Two Genomes of Cercospora Species Causing Gray Leaf Spot in Maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:14-25. [PMID: 36251001 DOI: 10.1094/mpmi-06-22-0138-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The gray leaf spots caused by Cercospora spp. severely affect the yield and quality of maize. However, the evolutionary relation and pathogenicity variation between species of the Cercospora genus is largely unknown. In this study, we constructed high-quality reference genomes by nanopore sequencing two Cercospora species, namely, C. zeae-maydis and C. zeina, with differing pathogenicity, collected from northeast (Liaoning [LN]) and southeast (Yunnan [YN]) China, respectively. The genome size of C. zeae-maydis-LN is 45.08 Mb, containing 10,839 annotated genes, whereas that of Cercospora zeina-YN is 42.18 Mb, containing 10,867 annotated genes, of which approximately 86.58% are common in the two species. The difference in their genome size is largely attributed to increased long terminal repeat retrotransposons of 3.8 Mb in total length in C. zeae-maydis-LN. There are 41 and 30 carbohydrate-binding gene subfamilies identified in C. zeae-maydis-LN and C. zeina-YN, respectively. A higher number of carbohydrate-binding families found in C. zeae-maydis-LN, and its unique CBM4, CBM37, and CBM66, in particular, may contribute to variation in pathogenicity between the two species, as the carbohydrate-binding genes are known to encode cell wall-degrading enzymes. Moreover, there are 114 and 107 effectors predicted, with 47 and 46 having unique potential pathogenicity in C. zeae-maydis-LN and C. zeina-YN, respectively. Of eight effectors randomly selected for pathogenic testing, five were found to inhibit cell apoptosis induced by Bcl-2-associated X. Taken together, our results provide genomic insights into variation in pathogenicity between C. zeae-maydis and C. zeina. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangling Lv
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Canxing Duan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hanyong Zhu
- Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, 663000, China
| | - Jianjun Wang
- Corn Research Institute, Shanxi Agricultural University, Xinzhou, Shanxi, 030600, China
| | - Zhennan Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifei Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Xiaohang Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuafang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fenghai Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
Hiltunen M, Ament-Velásquez SL, Ryberg M, Johannesson H. Stage-specific transposon activity in the life cycle of the fairy-ring mushroom Marasmius oreades. Proc Natl Acad Sci U S A 2022; 119:e2208575119. [PMID: 36343254 PMCID: PMC9674265 DOI: 10.1073/pnas.2208575119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.
Collapse
Affiliation(s)
- Markus Hiltunen
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
12
|
Genome-wide association mapping reveals genes underlying population-level metabolome diversity in a fungal crop pathogen. BMC Biol 2022; 20:224. [PMID: 36209159 PMCID: PMC9548119 DOI: 10.1186/s12915-022-01422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clusters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. However, the genetic basis underlying variation in SM production remains poorly understood. Results Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untargeted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3′UTR region of a virulence gene related to metabolite production and showing expression variation. Conclusions Taken together, our study provides a significant resource to unravel polymorphism underlying metabolome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant pathogens and help prioritize molecular studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01422-z.
Collapse
|
13
|
Wilson RA, McDowell JM. Recent advances in understanding of fungal and oomycete effectors. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102228. [PMID: 35605341 DOI: 10.1016/j.pbi.2022.102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Fungal and oomycete pathogens secrete complex arrays of proteins and small RNAs to interface with plant-host targets and manipulate plant regulatory networks to the microbes' advantage. Research on these important virulence factors has been accelerated by improved genome sequences, refined bioinformatic prediction tools, and exploitation of efficient platforms for understanding effector gene expression and function. Recent studies have validated the expectation that oomycetes and fungi target many of the same sectors in immune signaling networks, but the specific host plant targets and modes of action are diverse. Effector research has also contributed to deeper understanding of the mechanisms of effector-triggered immunity.
Collapse
Affiliation(s)
- Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Poudel B, Purushotham N, Jones A, Nasim J, Adorada DL, Sparks AH, Schwessinger B, Vaghefi N. The First Annotated Genome Assembly of Macrophomina tecta Associated with Charcoal Rot of Sorghum. Genome Biol Evol 2022; 14:evac081. [PMID: 35647618 PMCID: PMC9185371 DOI: 10.1093/gbe/evac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Charcoal rot is an important soilborne disease caused by a range of Macrophomina species, which affects a broad range of commercially important crops worldwide. Even though Macrophomina species are fungal pathogens of substantial economic importance, their mechanism of pathogenicity and host spectrum are poorly understood. There is an urgent need to better understand the biology, epidemiology, and evolution of Macrophomina species, which, in turn, will aid in improving charcoal rot management strategies. Here, we present the first high-quality genome assembly and annotation of Macrophomina tecta strain BRIP 70781 associated with charcoal rot symptoms on sorghum. Hybrid assembly integrating long reads generated by Oxford Nanopore Technology and short Illumina paired-end reads resulted in 43 contigs with a total assembly size of ∼54 Mb, and an N50 of 3.4 Mb. In total, 12,926 protein-coding genes and 7,036 repeats were predicted. Genome comparisons detected accumulation of DNA transposons in Macrophomina species associated with sorghum. The first reference genome of M. tecta generated in this study will contribute to more comparative and population genomics studies of Macrophomina species.
Collapse
Affiliation(s)
- Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Neeraj Purushotham
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- Loam Bio, Orange, NSW, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australia
| | - Jamila Nasim
- Loam Bio, Orange, NSW, Australia
- Research School of Biology, Australian National University, Canberra, Australia
| | - Dante L. Adorada
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Food, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Cadot S, Gfeller V, Hu L, Singh N, Sánchez‐Vallet A, Glauser G, Croll D, Erb M, van der Heijden MGA, Schlaeppi K. Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. PLANT, CELL & ENVIRONMENT 2021; 44:3502-3514. [PMID: 34505297 PMCID: PMC9292949 DOI: 10.1111/pce.14184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 06/02/2023]
Abstract
Plant-soil feedbacks refer to effects on plants that are mediated by soil modifications caused by the previous plant generation. Maize conditions the surrounding soil by secretion of root exudates including benzoxazinoids (BXs), a class of bioactive secondary metabolites. Previous work found that a BX-conditioned soil microbiota enhances insect resistance while reducing biomass in the next generation of maize plants. Whether these BX-mediated and microbially driven feedbacks are conserved across different soils and response species is unknown. We found the BX-feedbacks on maize growth and insect resistance conserved between two arable soils, but absent in a more fertile grassland soil, suggesting a soil-type dependence of BX feedbacks. We demonstrated that wheat also responded to BX-feedbacks. While the negative growth response to BX-conditioning was conserved in both cereals, insect resistance showed opposite patterns, with an increase in maize and a decrease in wheat. Wheat pathogen resistance was not affected. Finally and consistent with maize, we found the BX-feedbacks to be cultivar-specific. Taken together, BX-feedbacks affected cereal growth and resistance in a soil and genotype-dependent manner. Cultivar-specificity of BX-feedbacks is a key finding, as it hides the potential to optimize crops that avoid negative plant-soil feedbacks in rotations.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and EnvironmentAgroscopeZurichSwitzerland
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | | | - Lingfei Hu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and EnvironmentZhejiang UniversityZhejiangChina
| | - Nikhil Singh
- Laboratory of Evolutionary GeneticsUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Andrea Sánchez‐Vallet
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM)Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Klaus Schlaeppi
- Division of Agroecology and EnvironmentAgroscopeZurichSwitzerland
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
16
|
Singh NK, Karisto P, Croll D. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. Microb Genom 2021; 7:000678. [PMID: 34617882 PMCID: PMC8627204 DOI: 10.1099/mgen.0.000678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per kilobase, a linkage disequilibrium decay within 200-700 bp and a high effective population size. Using experimental infections, we tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable strategies to contain diseases.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Petteri Karisto
- Plant Health, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Fouché S, Oggenfuss U, Chanclud E, Croll D. A devil's bargain with transposable elements in plant pathogens. Trends Genet 2021; 38:222-230. [PMID: 34489138 DOI: 10.1016/j.tig.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Transposable elements (TEs) spread in genomes through self-copying mechanisms and are a major cause of genome expansions. Plant pathogens have finely tuned the expression of virulence factors to rely on epigenetic control targeted at nearby TEs. Stress experienced during the plant infection process leads to derepression of TEs and concurrently allows the expression of virulence factors. We argue that the derepression of TEs elements causes an evolutionary conflict by favoring TEs that can be reactivated. Active TEs and recent genome size expansions indicate that plant pathogens could face long-term consequences from the short-term benefit of fine-tuning the infection process. Hence, encoding key virulence factors close to TEs under epigenetic control constitutes a devil's bargain for pathogens.
Collapse
Affiliation(s)
- Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Department of Organismal Biology - Systematic Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Chanclud
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|