1
|
Liu L, Wang Y, Huang Y, Wang Z, Wang Q, Wang H. Genetic Diversity Analysis and Identification of Candidate Genes for Growth Traits in Chengkou Mountain Chicken. Int J Mol Sci 2024; 25:12939. [PMID: 39684650 DOI: 10.3390/ijms252312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Growth traits constitute critical factors in the breeding program of broiler chickens. The Chengkou mountain chicken A-lineage (CMC-A) represents a breed specifically bred for meat production. To further explore the growth performance of the CMC-A population, this study conducted whole-genome sequencing on 464 CMC-A roosters to systematically evaluate their genetic diversity. Additionally, runs of homozygosity (ROH) islands and genome-wide association studies (GWASs) were employed to identify the loci and functional genes influencing the growth traits in Chengkou mountain chickens. The results revealed a high level of genetic diversity and low levels of inbreeding in Chengkou mountain chickens. Several genes associated with stress resistance, muscle growth, and fat deposition were pinpointed through ROH island identification. Moreover, 52 SNP loci were detected, along with 71 candidate genes. These findings enhance our understanding of the genetic architecture underlying the growth traits in Chengkou mountain chickens and provide a theoretical foundation for subsequent breeding endeavors.
Collapse
Affiliation(s)
- Lingbin Liu
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, China
| | - Yi Wang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Huang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, China
| | - Zhen Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| |
Collapse
|
2
|
Zhang T, Li J, Hu J, Chen Y, Fu X, Zhao W, Tian J, Yang L, Zhang J. Identification of key differentially methylated genes regulating muscle development in chickens: insights from Jingyuan breed. Poult Sci 2024; 103:104292. [PMID: 39316980 PMCID: PMC11462489 DOI: 10.1016/j.psj.2024.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Skeletal muscle development is a complex, regulated physiological process that involves myoblast proliferation and differentiation and the fusion of myotubes. In this study, phenotypic differences in the breast and leg muscles of 180-day-old Jingyuan chickens were investigated. Differentially methylated genes (DMG) that regulate muscle development were identified through differential expression analysis and weighted gene co-expression network analysis. Moreover, myoblasts were used as test material and treated with cycloleucine to investigate the effect of N6-methyladenosine (m6A) modification on their proliferation and differentiation. The results revealed that the myofiber diameter and cross-sectional area in the breast muscle of Jingyuan chickens were significantly smaller than those in the leg muscle, while myofiber density in the breast muscle was significantly higher. A total of 484 DMG were identified in both muscle types. Module gene association analysis with DMGs revealed multiple DMG associated with muscle development. In vitro cell model analysis revealed that cycloleucine treatment significantly downregulated the m6A modification level of myoblasts and inhibited their proliferation and differentiation. Additionally, stage-specific differences in LDHA, LDHB, and GAPDH expressions were observed during myoblast differentiation. Cycloleucine treatment significantly inhibited LDHA, LDHB, and GAPDH expression. These findings indicate that m6A methylation modifications play significant regulatory roles in muscle development, with LDHA, LDHB, and GAPDH being potential candidate genes for regulating muscle development. This study provides an essential theoretical basis for further study on the functional mechanisms of m6A modifications involved in muscle development.
Collapse
Affiliation(s)
- Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiwei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiahuan Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yafei Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xi Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinli Tian
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijuan Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Shi J, Xiong H, Su J, Wang Q, Wang H, Yang C, Hu C, Cui Z, Liu L. Multiomics analyses reveal high yield-related genes in the hypothalamic-pituitary-ovarian/liver axis of chicken. Poult Sci 2024; 103:104276. [PMID: 39299017 PMCID: PMC11426133 DOI: 10.1016/j.psj.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Egg production, regulated by multiple tissues, is among the most important economic traits in poultry. However, current research only focuses on the hypothalamic-pituitary-ovarian axis, ignoring the most important organ for substance metabolism in the body, the liver. Eggs are rich in lipids, proteins, and other nutrients, which are biosynthesized in the liver. Therefore, here the liver was included in the study of the hypothalamic-pituitary axis. This study used hypothalamus (HH_vs_LH), pituitary (HP_vs_LP), liver (HL_vs_LL), and ovary (HO_vs_LO) tissue samples from high- and low-laying Chengkou mountain chickens (CMC) for epihistological, transcriptome and metabolomic analyses aimed at improving the reproductive performance of CMC. The results showed that the liver of the high-laying group was yellowish, the cell boundary was clear, and the lipid droplets were evenly distributed. The ovaries of the high-laying group had a complete sequence of hierarchical follicles, which were rich in yolk. In contrast, the ovaries of the low-laying group were atrophic, except for a few small yellow follicles, and numerous primordial follicles that remained. The transcriptome sequences yielded 167.11 Gb of clean data, containing 28,715 genes. Furthermore, 285, 822, 787, and 1,183 differentially expressed genes (DEG) were identified in HH_vs_LH, HP_vs_LP, HL_vs_LL and HO_vs_LO and the DEGs significantly enriched 77, 163, 170, 171 pathways, respectively. Metabolome sequencing yielded 21,808 peaks containing 4,006 metabolites. The differential metabolite analysis yielded 343 and 682 significantly different metabolites (SDM) that significantly enriched 136 and 87 pathways in the liver and ovaries, respectively. A combined analysis of the transcriptome and metabolome of the liver and ovaries identified "CYP51A1-4α-carboxy-stigmasta7, 24(24(1))-dien-3β-ol" and "ACSS1B-estrone 3-sulfate" and other multiple gene-metabolite pairs. The DEGs in the hypothalamus and pituitary mainly enriched signaling transduction. In contrast, the DEGs and SDMs in the liver and ovaries mainly enriched the substance metabolism pathways: "gap junction", "extracellular matrix (ECM)-receptor interaction", "Steroid biosynthesis", and "Steroid hormone biosynthesis". These results suggest that the hypothalamic-pituitary axis may affect egg production mainly by regulating lipid metabolism in the liver and ovaries.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Hanlin Xiong
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Junchao Su
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Haiwei Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhifu Cui
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China.
| |
Collapse
|
4
|
Li F, He Z, Lu Y, Zhou J, Cao H, Zhang X, Ji H, Lv K, Yu D, Yu M. Identification of relevant differential genes to the divergent development of pectoral muscle in ducks by transcriptomic analysis. Anim Biosci 2024; 37:1345-1354. [PMID: 38575126 PMCID: PMC11222850 DOI: 10.5713/ab.23.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE The objective of this study was to identify candidate genes that play important roles in skeletal muscle development in ducks. METHODS In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized lines: Liancheng white ducks (female) and Cherry valley ducks (male) hybrid Line A (LCA) and Line C (LCC) ducks. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes signaling pathways were further analyzed. Finally, a protein-to-protein interaction network was analyzed by using the target genes to gain insights into their potential functional association. RESULTS A total of 1,428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p<0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly enriched (p<0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including integrin b3 (Itgb3), pyruvate kinase M1/2 (Pkm), insulinlike growth factor 1 (Igf1), glucose-6-phosphate isomerase (Gpi), GABA type A receptorassociated protein-like 1 (Gabarapl1), and thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by quantitative realtime polymerase chain reaction (qRT-PCR). The result of qRT-PCR was consistent with that of transcriptome sequencing. CONCLUSION This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.
Collapse
Affiliation(s)
- Fan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Zongliang He
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing, Jiangsu 210036,
China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Jing Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Xingyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Hongjie Ji
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing, Jiangsu 210036,
China
| | - Kunpeng Lv
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing, Jiangsu 210036,
China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095,
China
| |
Collapse
|
5
|
Wang J, Xing C, Wang H, Zhang H, Wei W, Xu J, Liu Y, Guo X, Jiang R. Identification of key modules and hub genes involved in regulating the feather follicle development of Wannan chickens using WGCNA. Poult Sci 2024; 103:103903. [PMID: 38908121 PMCID: PMC11253687 DOI: 10.1016/j.psj.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.
Collapse
Affiliation(s)
- Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaohui Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Luo J, Yang Z, Li X, Xiao C, Yuan H, Yang X, Zhou B, Zheng Y, Zhang J, Yang X. High Muscle Expression of IGF2BP1 Gene Promotes Proliferation and Differentiation of Chicken Primary Myoblasts: Results of Transcriptome Analysis. Animals (Basel) 2024; 14:2024. [PMID: 39061491 PMCID: PMC11274093 DOI: 10.3390/ani14142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle development is a multifaceted process influenced by numerous genes and regulatory networks. Currently, the regulatory network of chicken muscle development remains incompletely elucidated, and its molecular genetic mechanisms require further investigation. The Longsheng-Feng chicken, one of the elite local breeds in Guangxi, serves as an excellent resource for the selection and breeding of high-quality broiler chickens. In this study, we conducted transcriptome sequencing of the pectoral muscles of Longsheng-Feng chickens and AA broiler chickens with different growth rates. Through comprehensive bioinformatics analysis, we identified differentially expressed genes that affect muscle growth and showed that IGF2BP1 is a key participant in chicken muscle development. Subsequently, we employed QRT-PCR, EdU staining, and flow cytometry to further investigate the role of IGF2BP1 in the proliferation and differentiation of chicken myogenic cells. We identified 1143 differentially expressed genes, among which IGF2BP1 is intimately related to the muscle development process and is highly expressed in muscle tissues. Overexpression of IGF2BP1 significantly promotes the proliferation and differentiation of chicken primary myoblasts, while knockdown of IGF2BP1 significantly inhibits these processes. In summary, these results provide valuable preliminary insights into the regulatory roles of IGF2BP1 in chicken growth and development.
Collapse
Affiliation(s)
- Jintang Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xianchao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Hong Yuan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xueqin Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Biyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Yan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Jiayi Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
7
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
8
|
Zhang Y, Wang H, Li X, Yang C, Yu C, Cui Z, Liu A, Wang Q, Liu L. Genome-wide characteristics and potential functions of circular RNAs from the embryo muscle development in Chengkou mountain chicken. Front Vet Sci 2024; 11:1375042. [PMID: 38872802 PMCID: PMC11171140 DOI: 10.3389/fvets.2024.1375042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
The Chengkou mountain chicken, a native Chinese poultry breed, holds significant importance in the country's poultry sector due to its delectable meat and robust stress tolerance. Muscle growth and development are pivotal characteristics in poultry breeding, with muscle fiber development during the embryonic period crucial for determining inherent muscle growth potential. Extensive evidence indicates that non-coding RNAs (ncRNAs) play a regulatory role in muscle growth and development. Among ncRNAs, circular RNAs (circRNAs), characterized by a closed-loop structure, have been shown to modulate biological processes through the regulation of microRNAs (miRNAs). This study seeks to identify and characterize the spatiotemporal-specific expression of circRNAs during embryonic muscle development in Chengkou mountain chicken, and to construct the potential regulatory network of circRNAs-miRNA-mRNAs. The muscle fibers of HE-stained sections became more distinct, and their boundaries were more defined over time. Subsequent RNA sequencing of 12 samples from four periods generated 9,904 novel circRNAs, including 917 differentially expressed circRNAs. The weighted gene co-expression network analysis (WGCNA)-identified circRNA source genes significantly enriched pathways related to cell fraction, cell growth, and muscle fiber growth regulation. Furthermore, a competitive endogenous RNA (ceRNA) network constructed using combined data of present and previous differentially expressed circRNAs, miRNA, and mRNA revealed that several circRNA transcripts regulate MYH1D, MYH1B, CAPZA1, and PERM1 proteins. These findings provide insight into the potential pathways and mechanisms through which circRNAs regulate embryonic muscle development in poultry, a theoretical support for trait improvement in domestic chickens.
Collapse
Affiliation(s)
- Yang Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xingqi Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Xiong H, Li W, Wang L, Wang X, Tang B, Cui Z, Liu L. Whole transcriptome analysis revealed the regulatory network and related pathways of non-coding RNA regulating ovarian atrophy in broody hens. Front Vet Sci 2024; 11:1399776. [PMID: 38868501 PMCID: PMC11168117 DOI: 10.3389/fvets.2024.1399776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Poultry broodiness can cause ovarian atresia, which has a detrimental impact on egg production. Non-coding RNAs (ncRNAs) have become one of the most talked-about topics in life sciences because of the increasing evidence of their novel biological roles in regulatory systems. However, the molecular mechanisms of ncRNAs functions and processes in chicken ovarian development remain largely unknown. Whole-transcriptome RNA sequencing of the ovaries of broodiness and laying chickens was thus performed to identify the ncRNA regulatory mechanisms associated with ovarian atresia in chickens. Subsequent analysis revealed that the ovaries of laying chickens and those with broodiness had 40 differentially expressed MicroRNA (miRNAs) (15 up-regulated and 25 down-regulated), 379 differentially expressed Long Noncoding RNA (lncRNAs) (213 up-regulated and 166 down-regulated), and 129 differentially expressed circular RNA (circRNAs) (63 up-regulated and 66 down-regulated). The competing endogenous RNAs (ceRNA) network analysis further revealed the involvement of ECM-receptor interaction, AGE-RAGE signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, renin secretion, gap junction, insulin secretion, serotonergic synapse, and IL-17 signaling pathways in broodiness. Upon further analysis, it became evident that THBS1 and MYLK are significant candidate genes implicated in the regulation of broodiness. The expression of these genes is linked to miR-155-x, miR-211-z, miR-1682-z, gga-miR-155, and gga-miR-1682, as well as to the competitive binding of novel_circ_014674 and MSTRG.3306.4. The findings of this study reveal the existence of a regulatory link between non-coding RNAs and their competing mRNAs, which provide a better comprehension of the ncRNA function and processes in chicken ovarian development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Ahlawat S, Arora R, Sharma R, Chhabra P, Kumar A, Kaur M, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Revelation of genes associated with energy generating metabolic pathways in the fighter type Aseel chicken of India through skeletal muscle transcriptome sequencing. Anim Biotechnol 2023; 34:4989-5000. [PMID: 37288785 DOI: 10.1080/10495398.2023.2219718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, comparative analysis of skeletal muscle transcriptome was carried out for four biological replicates of Aseel, a fighter type breed and Punjab Brown, a meat type breed of India. The profusely expressed genes in both breeds were related to muscle contraction and motor activity. Differential expression analysis identified 961 up-regulated and 979 down-regulated genes in Aseel at a threshold of log2 fold change ≥ ±2.0 (padj<0.05). Significantly enriched KEGG pathways in Aseel included metabolic pathways and oxidative phosphorylation, with higher expression of genes associated with fatty acid beta-oxidation, formation of ATP by chemiosmotic coupling, response to oxidative stress, and muscle contraction. The highly connected hub genes identified through gene network analysis in the Aseel gamecocks were HNF4A, APOA2, APOB, APOC3, AMBP, and ACOT13, which are primarily associated with energy generating metabolic pathways. The up-regulated genes in Punjab Brown chicken were found to be related to muscle growth and differentiation. There was enrichment of pathways such as focal adhesion, insulin signaling pathway and ECM receptor interaction in these birds. The results presented in this study help to improve our understanding of the molecular mechanisms associated with fighting ability and muscle growth in Aseel and Punjab Brown chicken, respectively.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
12
|
Wang X, Lin J, Jiao Z, Zhang L, Guo D, An L, Xie T, Lin S. Circular RNA circIGF2BP3 Promotes the Proliferation and Differentiation of Chicken Primary Myoblasts. Int J Mol Sci 2023; 24:15545. [PMID: 37958531 PMCID: PMC10650573 DOI: 10.3390/ijms242115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The quality and quantity of animal meat are closely related to the development of skeletal muscle, which, in turn, is determined by myogenic cells, including myoblasts and skeletal muscle satellite cells (SMSCs). Circular RNA, an endogenous RNA derivative formed through specific reverse splicing in mRNA precursors, has the potential to influence muscle development by binding to miRNAs or regulating gene expression involved in muscular growth at the transcriptional level. Previous high-throughput sequencing of circRNA in chicken liver tissue revealed a circular transcript, circIGF2BP3, derived from the gene encoding insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). In this study, we confirmed the presence of the natural circular molecule of circIGF2BP3 through an RNase R enzyme tolerance assay. RT-qPCR results showed high circIGF2BP3 expression in the pectoral and thigh muscles of Yuexi frizzled feather chickens at embryonic ages 14 and 18, as well as at 7 weeks post-hatch. Notably, its expression increased during embryonic development, followed by a rapid decrease after birth. As well as using RT-qPCR, Edu, CCK-8, immunofluorescence, and Western blot techniques, we demonstrated that overexpressing circIGF2BP3 could promote the proliferation and differentiation of chicken primary myoblasts through upregulating genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1), cyclin E1 (CCNE1), cyclin dependent kinase 2 (CDK2), myosin heavy chain (MyHC), myoblast-determining 1 (MyoD1), myogenin (MyoG), and Myomaker. In conclusion, circIGF2BP3 promotes the proliferation and differentiation of myoblasts in chickens. This study establishes a foundation for further investigation into the biological functions and mechanisms of circIGF2BP3 in myoblasts proliferation and differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.W.); (J.L.); (Z.J.); (L.Z.); (D.G.); (L.A.); (T.X.)
| |
Collapse
|
13
|
Li J, Chen C, Zhao R, Wu J, Li Z. Transcriptome analysis of mRNAs, lncRNAs, and miRNAs in the skeletal muscle of Tibetan chickens at different developmental stages. Front Physiol 2023; 14:1225349. [PMID: 37565148 PMCID: PMC10410567 DOI: 10.3389/fphys.2023.1225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: As a valuable genetic resource, native birds can contribute to the sustainable development of animal production. Tibetan chickens, known for their special flavor, are one of the important local poultry breeds in the Qinghai-Tibet Plateau. However, Tibetan chickens have a slow growth rate and poor carcass traits compared with broilers. Although most of the research on Tibetan chickens focused on their hypoxic adaptation, there were fewer studies related to skeletal muscle development. Methods: Here, we performed the transcriptional sequencing of leg muscles from Tibetan chicken embryos at E (embryonic)10, E14, and E18. Results: In total, 1,600, 4,610, and 2,166 DE (differentially expressed) mRNAs, 210, 573, and 234 DE lncRNAs (long non-coding RNAs), and 52, 137, and 33 DE miRNAs (microRNAs) were detected between E10 and E14, E10 and E18, and E14 and E18, respectively. Functional prediction showed several DE mRNAs and the target mRNAs of DE lncRNAs and DE miRNAs were significantly enriched in sarcomere organization, actin cytoskeleton organization, myofibril, muscle fiber development, and other terms and pathways related to muscle growth and development. Finally, a lncRNA-miRNA-mRNA ceRNA (competing endogenous RNA) network associated with muscle growth and development, which contained 6 DE lncRNAs, 13 DE miRNAs, and 50 DE mRNAs, was constructed based on the screened DE RNAs by Gene Ontology (GO) enrichment. These DE RNAs may play a critical regulatory role in the skeletal muscle development of chickens. Discussion: The results provide a genomic resource for mRNAs, lncRNAs, and miRNAs potentially involved in the skeletal muscle development of chickens, which lay the foundation for further studies of the molecular mechanisms underlying skeletal muscle growth and development in Tibetan chickens.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chuwen Chen
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruipeng Zhao
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jinbo Wu
- Institute of Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba Sichuan, China
| | - Zhixiong Li
- Laboratory of Ministry of Education for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Liu L, Yin L, Yuan Y, Tang Y, Lin Z, Liu Y, Yang J. Developmental Characteristics of Skeletal Muscle during the Embryonic Stage in Chinese Yellow Quail ( Coturnix japonica). Animals (Basel) 2023; 13:2317. [PMID: 37508093 PMCID: PMC10376076 DOI: 10.3390/ani13142317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The quail is an important research model, and the demand for quail meat has been increasing in recent years; therefore, it is worthwhile investigating the development of embryonic skeletal muscle and the expression patterns of regulatory genes. In this study, the expression of MyoD and Pax7 in the breast muscle (m. pectoralis major) and leg muscle (m. biceps femoris) of quail embryos on days 10 through 17 were determined using qRT-PCR. Paraffin sections of embryonic muscle were analyzed to characterize changes over time. Results showed that MyoD and Pax7 were expressed in both breast and leg muscles and played a significant role in embryonic muscle development. Compared to breast muscle, leg muscle grew faster and had greater weight and myofiber size. The findings suggested that embryonic day 12 (E12) may be a key point for muscle development. Correlation analysis showed that MyoD expression was significantly negatively correlated with muscle and embryo weight, whereas Pax7 gene expression had no significant correlation with these characteristics. These fundamental results provide a theoretical basis for understanding the characteristics and transition points of skeletal muscle development in quail embryos and an important reference for farmers raising quail from eggs.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaohan Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Chen B, Wang Y, Hou D, Zhang Y, Zhang B, Niu Y, Ji H, Tian Y, Liu X, Kang X, Cai H, Li Z. Transcriptome-Based Identification of the Muscle Tissue-Specific Expression Gene CKM and Its Regulation of Proliferation, Apoptosis and Differentiation in Chicken Primary Myoblasts. Animals (Basel) 2023; 13:2316. [PMID: 37508090 PMCID: PMC10376263 DOI: 10.3390/ani13142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Bochun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| |
Collapse
|
16
|
Arora R, Sharma R, Ahlawat S, Chhabra P, Kumar A, Kaur M, Vijh RK, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Transcriptomics reveals key genes responsible for functional diversity in pectoralis major muscles of native black Kadaknath and broiler chicken. 3 Biotech 2023; 13:253. [PMID: 37396468 PMCID: PMC10310660 DOI: 10.1007/s13205-023-03682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
RNA sequencing-based expression profiles from pectoralis major muscles of black meat (Kadaknath) and white meat (broiler) chicken were compared to identify differentially expressed genes. A total of 156 genes with log2 fold change ≥ ± 2.0 showed higher expression in Kadaknath and 68 genes were expressed at a lower level in comparison to broiler. Significantly enriched biological functions of up-regulated genes in Kadaknath were skeletal muscle cell differentiation, regulation of response to reactive oxygen, positive regulation of fat cell differentiation and melanosome. Significant ontology terms up-regulated in broiler included DNA replication origin binding, G-protein coupled receptor signaling pathway and chemokine activity. Highly inter-connected differentially expressed genes in Kadaknath (ATFs, C/EPDs) were observed to be important regulators of cellular adaptive functions, while in broiler, the hub genes were involved in cell cycle progression and DNA replication. The study is an attempt to get an insight into the transcript diversity of pectoralis major muscles of Kadaknath and broiler chicken. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03682-0.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- Animal Biotechnology Division, G T Road By-Pass, P O Box 129, Karnal, Haryana 132001 India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
17
|
Ren X, Guan Z, Zhao X, Zhang X, Wen J, Cheng H, Zhang Y, Cheng X, Liu Y, Ning Z, Qu L. Systematic Selection Signature Analysis of Chinese Gamecocks Based on Genomic and Transcriptomic Data. Int J Mol Sci 2023; 24:ijms24065868. [PMID: 36982941 PMCID: PMC10059269 DOI: 10.3390/ijms24065868] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (FST), and transcriptome analyses. Ten genes were identified using GWAS and FST: gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective.
Collapse
Affiliation(s)
- Xufang Ren
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zi Guan
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huan Cheng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Transcriptomics and Selection Pressure Analysis Reveals the Influence Mechanism of PLIN1 Protein on the Development of Small Size in Min Pigs. Int J Mol Sci 2023; 24:ijms24043947. [PMID: 36835359 PMCID: PMC9960057 DOI: 10.3390/ijms24043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Body size is an important biological phenotypic trait that has attracted substantial attention. Small domestic pigs can serve as excellent animal models for biomedicine and also help meet sacrificial culture needs in human societies. Although the mechanisms underlying vertebral development regulating body size variation in domestic pigs during the embryonic period have been well described, few studies have examined the genetic basis of body size variation in post embryonic developmental stages. In this study, seven candidate genes-PLIN1, LIPE, PNPLA1, SCD, FABP5, KRT10 and IVL-significantly associated with body size were identified in Min pigs, on the basis of weighted gene co-expression network analysis (WGCNA), and most of their functions were found to be associated with lipid deposition. Six candidate genes except for IVL were found to have been subjected to purifying selection. PLIN1 had the lowest ω value (0.139) and showed heterogeneous selective pressure among domestic pig lineages with different body sizes (p < 0.05). These results suggested that PLIN1 is an important genetic factor regulating lipid deposition and consequently affecting body size variation in pigs. The culture of whole pig sacrifice in Manchu during the Qing Dynasty in China might have contributed to the strong artificial domestication and selection of Hebao pigs.
Collapse
|
19
|
Fan Y, Zhang Z, Deng K, Kang Z, Guo J, Zhang G, Zhang Y, Wang F. CircUBE3A promotes myoblasts proliferation and differentiation by sponging miR-28-5p to enhance expression. Int J Biol Macromol 2023; 226:730-745. [PMID: 36526061 DOI: 10.1016/j.ijbiomac.2022.12.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
circRNAs have been found to be involved in the regulatory network of skeletal muscle development in studies. However, their precise functions and regulatory mechanisms remain unknown. The expression patterns and alterations of circRNAs in the longissimus dorsi muscle of two major developmental stages of goats (D75 fetus and D1 kid) were studied using high-throughput sequencing technology and bioinformatics tools in this study. In kid skeletal muscles, 831 differently expressed circRNAs were found, comprising 486 up-regulated circRNAs and 345 down-regulated circRNAs. In skeletal muscle, we focused on the highly expressed and variably expressed circUBE3A. CircUBE3A levels were discovered to be much higher in kid skeletal muscle and differentiated myoblasts. Knocking down circUBE3A resulted in a significant increase in cell proliferation and differentiation in goat myoblasts. CircUBE3A specifically binds to and inhibits miR-28-5p, boosting the expression of Hydroxyacyl Coenzyme A Dehydrogenase Beta (HADHB) and contributing to goat myoblast proliferation and differentiation, according to the mechanistic investigation. The above results indicated that circUBE3A could regulate HADHB expression by targeting miR-28-5p, consequently increasing goat myoblast proliferation and differentiation. Our findings offer fresh perspectives on goat breeding and growth regulation, as well as substantial theoretical basis.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Kang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Cheng X, Li X, Liu Y, Ma Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. DNA methylome and transcriptome identified Key genes and pathways involved in Speckled Eggshell formation in aged laying hens. BMC Genomics 2023; 24:31. [PMID: 36658492 PMCID: PMC9854222 DOI: 10.1186/s12864-022-09100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The quality of poultry eggshells is closely related to the profitability of egg production. Eggshell speckles reflect an important quality trait that influences egg appearance and customer preference. However, the mechanism of speckle formation remains poorly understood. In this study, we systematically compared serum immune and antioxidant indices of hens laying speckled and normal eggs. Transcriptome and methylome analyses were used to elucidate the mechanism of eggshell speckle formation. RESULTS The results showed that seven differentially expressed genes (DEGs) were identified between the normal and speckle groups. Gene set enrichment analysis (GSEA) revealed that the expressed genes were mainly enriched in the calcium signaling pathway, focal adhesion, and MAPK signaling pathway. Additionally, 282 differentially methylated genes (DMGs) were detected, of which 15 genes were associated with aging, including ARNTL, CAV1, and GCLC. Pathway analysis showed that the DMGs were associated with T cell-mediated immunity, response to oxidative stress, and cellular response to DNA damage stimulus. Integrative analysis of transcriptome and DNA methylation data identified BFSP2 as the only overlapping gene, which was expressed at low levels and hypomethylated in the speckle group. CONCLUSIONS Overall, these results indicate that aging- and immune-related genes and pathways play a crucial role in the formation of speckled eggshells, providing useful information for improving eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xinghua Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuchen Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ruiqi Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yalan Zhang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuidie Fan
- Rongde Breeding Company Limited, Hebei, 053000 China
| | - Lujiang Qu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhonghua Ning
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
21
|
Luo Y, Hu S, Yan P, Wu J, Guo H, Zhao L, Tang Q, Ma J, Long K, Jin L, Jiang A, Li M, Li X, Wang X. Analysis of mRNA and lncRNA Expression Profiles of Breast Muscle during Pigeon ( Columbalivia) Development. Genes (Basel) 2022; 13:genes13122314. [PMID: 36553580 PMCID: PMC9777807 DOI: 10.3390/genes13122314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.
Collapse
Affiliation(s)
- Yi Luo
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiqi Yan
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| | - Xun Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
22
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
23
|
Wallace SJ, de Solla SR, Langlois VS. Phenology of the transcriptome coincides with the physiology of double-crested cormorant embryonic development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101029. [PMID: 36302318 DOI: 10.1016/j.cbd.2022.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
The rigorous timing of the dynamic transcriptome within the embryo has to be well orchestrated for normal development. Identifying the phenology of the transcriptome along with the physiology of embryonic development in birds may suggest periods of increased sensitivity to contaminant exposure depending on the contaminant's mechanism of action. Double-crested cormorants (Nannopterum auritum, formerly Phalacrocorax auritus) are commonly used in ecotoxicological studies, but relatively little is known about their functional transcriptome profile in early development. In this study, we tracked the phenology of the transcriptome during N. auritum embryogenesis. Fresh eggs were collected from a reference site and artificially incubated from collection until four days prior to hatching. Embryos were periodically sampled throughout incubation for a total of seven time points. A custom microarray was designed for cormorants (over 14,000 probes) and used for transcriptome analysis in whole body (days 5, 8) and liver tissue (days 12, 14, 16, 20, 24). Three main developmental periods (early, mid, and late incubation) were identified with differentially expressed genes, gene sets, and pathways within and between each developmental transition. Overall, the timing of differentially expressed genes and enriched pathways corresponded to previously documented changes in morphology, neurology, or physiology during avian embryonic development. Targeted investigation of a subset of genes involved in endogenous and xenobiotic metabolism (e.g., cytochrome P450 cyp1a, cyp1b1, superoxide dismutase 1 sod1) were expressed in a pattern similar to reported endogenous compound levels. These data can provide insights on normal embryonic development in an ecologically relevant species without any environmental contaminant exposure.
Collapse
Affiliation(s)
- Sarah J Wallace
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada. https://twitter.com/@sjwallace06
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
24
|
Shi H, Fu J, He Y, Li Z, Kang J, Hu C, Zi X, Liu Y, Zhao J, Dou T, Jia J, Duan Y, Wang K, Ge C. Hyperpigmentation Inhibits Early Skeletal Muscle Development in Tengchong Snow Chicken Breed. Genes (Basel) 2022; 13:genes13122253. [PMID: 36553521 PMCID: PMC9778309 DOI: 10.3390/genes13122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tengchong snow, which has white feathers and black meat, is one of the most important black-bone chicken breeds and a genetic treasure of black food in China. Although the black meat traits are dominant, there are some chickens with white meat traits born in the process of folk selection and breeding. The purpose of this study was to compare the differences in skeletal muscle development between Tengchong snow black meat chickens (BS) and white meat chickens (WS), as well as whether excessive melanin deposition has an effect on skeletal muscle development. The BS and WS groups were selected to determine their muscle development difference at stages of 1, 7, 14, 21, and 42 days, using histological stain methods to analyze the development and composing type of breast and leg muscle fibers, as well as the count of melanin in BS muscle fibers. Finally, we were validated key candidate genes associated with muscle development and melanin synthesis. The results showed that BS breast muscle development was inhibited at 7, 14, and 21 days, while the leg muscle was inhibited at 7, 14, 21, and 42 days, compared to WS. Melanin deposition was present in a temporal migration pattern and was greater in the leg muscles than in the breast muscles, and it focused around blood vessels, as well as the epithelium, perimysium, endomysium, and connective tissue. Additionally, melanin produced an inhibitory effect similar to MSTN during skeletal muscle fiber development, and the inhibition was strongest at the stage of melanin entry between muscle fibers, but the precise mechanisms need to be confirmed. This study revealed that melanin has an inhibitory effect on the early development of skeletal muscle, which will provide new insights into the role of melanin in the black-boned chicken and theoretical references for the future conservation and utilization of black-boned chicken.
Collapse
Affiliation(s)
- Hongmei Shi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changjie Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jinbo Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Duan
- Kunming Animal Health Supervision, 118 Gulou Road, Kunming 650223, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
25
|
Pan Z, Yang C, Zhao R, Jiang X, Yu C, Li Z. Characterization of lncRNA/circRNA-miRNA-mRNA network to reveal potential functional ceRNAs in the skeletal muscle of chicken. Front Physiol 2022; 13:969854. [PMID: 36246144 PMCID: PMC9558166 DOI: 10.3389/fphys.2022.969854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle, comprising approximately 40% of body mass, is a highly complex and heterogeneous tissue serving a multitude of functions in the organism. Non-coding RNAs (ncRNAs) are known to participate in skeletal muscle development as critical regulators. However, the regulatory mechanisms of ncRNAs on chicken muscle traits are not well understood. In the present study, we collected the leg muscle from male embryos of Tibetan chicken at embryonic (E) 10 and E18 for RNA sequencing. A total of 6,583 differentially expressed mRNAs (DEMs) including 3,055 down-regulated and 3,528 up-regulated were identified in E18. We identified 695 differentially expressed lncRNAs (DELs) (187 down-regulated and 508 up-regulated) and 1,906 differentially expressed circRNAs (DECs) (1,224 down-regulated and 682 up-regulated) in E18. Among the 130 differentially expressed miRNAs (DEMIs), 59 were up-regulated and 71 were down-regulated in E18. Numerous DEMs and target genes for miRNAs/lncRNAs were significantly enriched in the muscle system process and cell cycle. We constructed a miRNA-gene-pathway network by considering target relationships between genes related to skeletal muscle development and miRNAs. A competing endogenous RNA (ceRNA) network was also constructed by integrating competing relationships between DEMs, DELs, and DECs. Several DELs and DECs were predicted to regulate the ADRA1B, ATP2A2, ATP2B1, CACNA1S, CACNB4, MYLK2, and ROCK2 genes. We discovered the crosstalk between the ncRNAs and their competing mRNAs, which provides insights into ceRNA function and mechanisms in the skeletal muscle development of chicken.
Collapse
Affiliation(s)
- Zegun Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of EducationSouthwest Minzu University, Chengdu, Sichuan, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Ruipeng Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of EducationSouthwest Minzu University, Chengdu, Sichuan, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chunli Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of EducationSouthwest Minzu University, Chengdu, Sichuan, China
- *Correspondence: Zhixiong Li,
| |
Collapse
|
26
|
Shi J, Li W, Liu A, Ren L, Zhang P, Jiang T, Han Y, Liu L. MiRNA sequencing of Embryonic Myogenesis in Chengkou Mountain Chicken. BMC Genomics 2022; 23:571. [PMID: 35948880 PMCID: PMC9364561 DOI: 10.1186/s12864-022-08795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction, GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis determined the significantly different miRNAs between chicken embryo leg muscles at different developmental stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different developmental stages, and the hub miRNAs were screened following the KME value. RESULTS The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267 novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C, FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan module and gga-miR-132b-5p for E21. CONCLUSION These results lay a foundation for further research on the molecular regulatory mechanism of embryonic muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle development studies.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Wendong Li
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Anfang Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingtong Ren
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Pusen Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Ting Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Yuqing Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China.
| |
Collapse
|
27
|
Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Embryo Muscle of Chicken. Animals (Basel) 2022; 12:ani12101274. [PMID: 35625120 PMCID: PMC9137640 DOI: 10.3390/ani12101274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic muscle development determines the state of muscle development and muscle morphological structure size. Recent studies have found that long non-coding RNAs (lncRNAs) could influence numerous cellular processes and regulated growth and development of flora and fauna. A total of 1056 differentially expressed lncRNAs were identified by comparing the different time points during embryonic muscle development, which included 874 new lncRNAs. Here, we found that there were different gene expression patterns on the 12th day of embryo development (E12). Herein, WGCNA and correlation analyses were used to predict lncRNA function on E12 through the screening and identification of lncRNAs related to muscle development in the embryo leg muscles of Chengkou mountain chickens at different times. GO and KEGG functional enrichment analysis was performed on target genes involved in cis-regulation and trans-regulation. An interaction network diagram was constructed based on the muscle development pathways, such as Wnt, FoxO, and PI3K-AKT signaling pathways, to determine the interaction between mRNAs and lncRNAs. This study preliminarily determined the lncRNA expression pattern of muscle development during the middle and late embryonic stages of Chengkou mountain chickens, and provided a basis to analyze the molecular mechanism of muscle development.
Collapse
|
28
|
Zhou KZ, Wu PF, Zhang XC, Ling XZ, Zhang J, Zhang L, Li PF, Zhang T, Wei QY, Zhang GX. Comparative Analysis of miRNA Expression Profiles in Skeletal Muscle of Bian Chickens at Different Embryonic Ages. Animals (Basel) 2022; 12:1003. [PMID: 35454249 PMCID: PMC9025512 DOI: 10.3390/ani12081003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are widely involved in the growth and development of skeletal muscle through the negative regulation of target genes. In order to screen out the differentially expressed miRNAs (DEMs) associated with skeletal muscle development of Bian chickens at different embryonic ages, we used the leg muscles of fast-growing and slow-growing Bian chickens at the 14th and 20th embryonic ages (F14, F20, S14 and S20) for RNA-seq. A total of 836 known miRNAs were identified, and 121 novel miRNAs were predicted. In the F14 vs. F20 comparison group, 127 DEMs were screened, targeting a total of 2871 genes, with 61 miRNAs significantly upregulated and 66 miRNAs significantly downregulated. In the S14 vs. S20 comparison group, 131 DEMs were screened, targeting a total of 3236 genes, with 60 miRNAs significantly upregulated and 71 miRNAs significantly downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the predicted target genes were significantly enriched in 706 GO terms and 6 KEGG pathways in the F14 vs. F20 group and 677 GO terms and 5 KEGG pathways in the S14 vs. S20 group. According to the interaction network analysis, we screened five coexpressed DEMs (gga-miR-146a-3p, gga-miR-2954, gga-miR-34a-5p, gga-miR-1625-5p and gga-miR-18b-3p) with the highest connectivity degree with predicted target genes between the two comparison groups, and five hub genes (HSPA5, PKM2, Notch1, Notch2 and RBPJ) related to muscle development were obtained as well. Subsequently, we further identified nine DEMs (gga-let-7g-3p, gga-miR-490-3p, gga-miR-6660-3p, gga-miR-12223-5p, novel-miR-327, gga-miR-18a-5p, gga-miR-18b-5p, gga-miR-34a-5p and gga-miR-1677-3p) with a targeting relationship to the hub genes, suggesting that they may play important roles in the muscle development of Bian chickens. This study reveals the miRNA differences in skeletal muscle development between 14- and 20-day embryos of Bian chickens from fast- and slow-growing groups and provides a miRNA database for further studies on the molecular mechanisms of the skeletal muscle development in Bian chickens.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Li Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Pei-Feng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| | - Qing-Yu Wei
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (L.Z.); (P.-F.L.); (Q.-Y.W.)
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (K.-Z.Z.); (P.-F.W.); (X.-C.Z.); (X.-Z.L.); (J.Z.); (T.Z.)
| |
Collapse
|