1
|
Pai MGJ, Biswas D, Verma A, Srivastava S. A proteome-level view of brain tumors for a better understanding of novel diagnosis, prognosis, and therapy. Expert Rev Proteomics 2023; 20:381-395. [PMID: 37970632 DOI: 10.1080/14789450.2023.2283498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Brain tumors are complex and heterogeneous malignancies with significant challenges in diagnosis, prognosis, and therapy. Proteomics, the large-scale study of proteins and their functions, has emerged as a powerful tool to comprehensively investigate the molecular mechanisms underlying brain tumor regulation. AREAS COVERED This review explores brain tumors from a proteomic standpoint, highlighting recent progress and insights gained through proteomic methods. It delves into the proteomic techniques employed and underscores potential biomarkers for early detection, prognosis, and treatment planning. Recent PubMed Central proteomic studies (2017-present) are discussed, summarizing findings on altered protein expression, post-translational changes, and protein interactions. This sheds light on brain tumor signaling pathways and their significance in innovative therapeutic approaches. EXPERT OPINION Proteomics offers immense potential for revolutionizing brain tumor diagnosis and therapy. To unlock its full benefits, further translational research is crucial. Combining proteomics with other omics data enhances our grasp of brain tumors. Validating and translating proteomic biomarkers are vital for better patient results. Challenges include tumor complexity, lack of curated proteomic databases, and the need for collaboration between researchers and clinicians. Overcoming these challenges requires investment in technology, data sharing, and translational research.
Collapse
Affiliation(s)
- Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Capobianco E, Dominietto M. Assessment of brain cancer atlas maps with multimodal imaging features. J Transl Med 2023; 21:385. [PMID: 37308956 PMCID: PMC10262565 DOI: 10.1186/s12967-023-04222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. MAIN TEXT Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. CONCLUSIONS The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy.
Collapse
Affiliation(s)
- Enrico Capobianco
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Marco Dominietto
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
- Gate To Brain SA, Via Livio 7, 6830, Chiasso, Switzerland
| |
Collapse
|
3
|
O'Reilly D, Belgrad J, Ferguson C, Summers A, Sapp E, McHugh C, Mathews E, Boudi A, Buchwald J, Ly S, Moreno D, Furgal R, Luu E, Kennedy Z, Hariharan V, Monopoli K, Yang XW, Carroll J, DiFiglia M, Aronin N, Khvorova A. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease. Mol Ther 2023; 31:1661-1674. [PMID: 37177784 PMCID: PMC10277892 DOI: 10.1016/j.ymthe.2023.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.
Collapse
Affiliation(s)
- Daniel O'Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cassandra McHugh
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Ella Mathews
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Moreno
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffery Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA; Department of Neurology, University of Washington, Seattle, WA 98104-2499, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Zhong Y, Chen X, Zhao J, Deng H, Li X, Xie Z, Zhou B, Xian Z, Li X, Luo G, Li H. Integrative analyses of potential biomarkers and pathways for non-obstructive azoospermia. Front Genet 2022; 13:988047. [PMID: 36506310 PMCID: PMC9730279 DOI: 10.3389/fgene.2022.988047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Non-obstructive azoospermia (NOA) is the most severe form of male infertility. Currently, the molecular mechanisms underlying NOA pathology have not yet been elucidated. Hence, elucidation of the mechanisms of NOA and exploration of potential biomarkers are essential for accurate diagnosis and treatment of this disease. In the present study, we aimed to screen for biomarkers and pathways involved in NOA and reveal their potential molecular mechanisms using integrated bioinformatics. Methods: We downloaded two gene expression datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in NOA and matched the control group tissues were identified using the limma package in R software. Subsequently, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, gene-microRNAs network, and transcription factor (TF)-hub genes regulatory network analyses were performed to identify hub genes and associated pathways. Finally, we conducted immune infiltration analysis using CIBERSORT to evaluate the relationship between the hub genes and the NOA immune infiltration levels. Results: We identified 698 common DEGs, including 87 commonly upregulated and 611 commonly downregulated genes in the two datasets. GO analysis indicated that the most significantly enriched gene was protein polyglycylation, and KEGG pathway analysis revealed that the DEGs were most significantly enriched in taste transduction and pancreatic secretion signaling pathways. GSEA showed that DEGs affected the biological functions of the ribosome, focaladhesion, and protein_expor. We further identified the top 31 hub genes from the PPI network, and friends analysis of hub genes in the PPI network showed that NR4A2 had the highest score. In addition, immune infiltration analysis found that CD8+ T cells and plasma cells were significantly correlated with ODF3 expression, whereas naive B cells, plasma cells, monocytes, M2 macrophages, and resting mast cells showed significant variation in the NR4A2 gene expression group, and there were differences in T cell regulatory immune cell infiltration in the FOS gene expression groups. Conclusion: The present study successfully constructed a regulatory network of DEGs between NOA and normal controls and screened three hub genes using integrative bioinformatics analysis. In addition, our results suggest that functional changes in several immune cells in the immune microenvironment may play an important role in spermatogenesis. Our results provide a novel understanding of the molecular mechanisms of NOA and offer potential biomarkers for its diagnosis and treatment.
Collapse
Affiliation(s)
- Yucheng Zhong
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xiaoqing Chen
- Department of Breast Surgical Oncology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Jun Zhao
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Hao Deng
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xiaohang Li
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Zhongju Xie
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Bingyu Zhou
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Zhuojie Xian
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xiaoqin Li
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Guoqun Luo
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China,*Correspondence: Guoqun Luo, ; Huan Li,
| | - Huan Li
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China,*Correspondence: Guoqun Luo, ; Huan Li,
| |
Collapse
|
5
|
Godbout K, Tremblay JP. Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14102129. [PMID: 36297564 PMCID: PMC9611171 DOI: 10.3390/pharmaceutics14102129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Gene therapy holds great promise in the treatment of genetic diseases. It is now possible to make DNA modifications using the CRISPR system. However, a major problem remains: the delivery of these CRISPR-derived technologies to specific organs. Lipid nanoparticles (LNPs) have emerged as a very promising delivery method. However, when delivering LNPs intravenously, most of the cargo is trapped by the liver. Alternatively, injecting them directly into organs, such as the brain, requires more invasive procedures. Therefore, developing more specific LNPs is crucial for their future clinical use. Modifying the composition of the lipids in the LNPs allows more specific deliveries of the LNPs to some organs. In this review, we have identified the most effective compositions and proportions of lipids for LNPs to target specific organs, such as the brain, lungs, muscles, heart, liver, spleen, and bones.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|