1
|
Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses LJ, Theodore T, Christopher JG. Genomic insights into an endophytic Streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 2024; 15:1407289. [PMID: 38887720 PMCID: PMC11180775 DOI: 10.3389/fmicb.2024.1407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Pattapulavar Veilumuthu
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - T. Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sasikumar Sundaresan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Lenus Joy Moses
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thomas Theodore
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - John Godwin Christopher
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
J Ashwini John, Selvarajan E. Genomic analysis of lignocellulolytic enzyme producing novel Streptomyces sp.MS2A for the bioethanol applications. Int J Biol Macromol 2023; 250:126138. [PMID: 37558017 DOI: 10.1016/j.ijbiomac.2023.126138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism. Out of 39 actinobacteria, one actinobacterial strain MS2A, showed CMCase, FPase, and cellobiohydrolase activity. The whole genome analysis of Streptomyces sp. MS2A showed maximum similarity with Streptomyces sp. CCM_MD2014. The genome analysis confirmed the presence of cellulose-degrading genes along with xylan-degrading genes that code for GH3, GH6, GH9, GH11, GH43, GH51, and 15 other GH families with glycosyl transferase, carbohydrate-binding modules, and energy metabolism groups. Protein family analysis corroborates the enzyme family. Among the 19,402 genes of Streptomyces sp. MS2A, approximately 70 GH family codes for lignocellulose degradation enzymes. The structure of cellulase was modeled and validated. Scanning electron microscopy and gas chromatography-mass spectrometry (GCMS) was performed to analyze the lignocellulosic degradation of rice husk and the end product bioethanol.
Collapse
Affiliation(s)
- J Ashwini John
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| |
Collapse
|
3
|
Genome-Based Analysis of the Potential Bioactivity of the Terrestrial Streptomyces vinaceusdrappus Strain AC-40. BIOLOGY 2023; 12:biology12030345. [PMID: 36979037 PMCID: PMC10044865 DOI: 10.3390/biology12030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Streptomyces are factories of antimicrobial secondary metabolites. We isolated a Streptomyces species associated with the Pelargonium graveolens rhizosphere. Its total metabolic extract exhibited potent antibacterial and antifungal properties against all the tested pathogenic microbes. Whole genome sequencing and genome analyses were performed to take a look at its main characteristics and to reconstruct the metabolic pathways that can be associated with biotechnologically useful traits. AntiSMASH was used to identify the secondary metabolite gene clusters. In addition, we searched for known genes associated with plant growth-promoting characteristics. Finally, a comparative and pan-genome analysis with three closely related genomes was conducted. It was identified as Streptomyces vinaceusdrappus strain AC-40. Genome mining indicated the presence of several secondary metabolite gene clusters. Some of them are identical or homologs to gene clusters of known metabolites with antimicrobial, antioxidant, and other bioactivities. It also showed the presence of several genes related to plant growth promotion traits. The comparative genome analysis indicated that at least five of these gene clusters are highly conserved through rochei group genomes. The genotypic and phenotypic characteristics of S. vinaceusdrappus strain AC-40 indicate that it is a promising source of beneficial secondary metabolites with pharmaceutical and biotechnological applications.
Collapse
|
4
|
Khushboo, Singhvi N, Gupta V, Dhaka N, Dubey KK. Draft genome sequence of Streptomyces sp. KD18, isolated from industrial soil. 3 Biotech 2023; 13:34. [PMID: 36619820 PMCID: PMC9810780 DOI: 10.1007/s13205-022-03453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023] Open
Abstract
The present study scrutinizes the presence of Streptomyces strains in the soil sample collected from industrial area of Bahadurgarh (Haryana) India. The morphological approach manifested the isolated strain belong to Streptomyces species and named as Streptomyces sp. KD18. Sequencing of Streptomyces sp. KD18 genome was performed by Illumina Nextseq500 platform. 65 contigs were generated via SPAdes v3.11.1 and harboured genome size of 7.2 Mb. AntiSMASH server revealed the presence of 25 biosynthetic gene clusters in KD18 genome where BGC of lipstatin was of more interest from industrial and pharmaceutical purpose. The draft genome sequence represented via ANI values claimed that the KD18 strain belongs to Streptomyces toxytricini and finally named as S. toxytricini KD18. The LC-MS analysis of the extracted metabolite confirmed the production of lipstatin. The genome sequence data have been deposited to NCBI under the accession number of GCA_014748315.1. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03453-3.
Collapse
Affiliation(s)
- Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007 India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, Uttarakhand 248001 India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031 India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
5
|
Quach NT, Vu THN, Bui TL, Le TTX, Nguyen TTA, Ngo CC, Phi QT. Genomic and physiological traits provide insights into ecological niche adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Endophytic Streptomyces parvulus VCCM 22513 isolated from Bruguiera gymnorrhiza in Quang Ninh mangrove forest, northern Vietnam showed abiotic stress tolerance consisting of antioxidant, salt-tolerant, and aromatic-compound degrading activities. The goal of this study was to shed light on genomic bases rendering mangrove endophytic S. parvulus more resilient to environmental stressors.
Methods
Phenotypic analysis including antioxidant activities, hydrogen peroxide and sodium chloride resistance, and aromatic compound utilization were evaluated. The genome of strain VCCM 22513 was sequenced using Illumina Miseq sequencing platform and assembled using SPAdes.
Results
Out of 15 endophytic actinomycetes associated with B. gymnorrhiza in Quang Ninh mangrove, northern Vietnam, VCCM 22513 extract showed remarkable antioxidant activities through (1,1-diphenyl-2-picrylhydrazyl) DPPH and superoxide radical scavenging assays of 72.1 ± 0.04% and 38.3 ± 0.16% at 1.6 mg/ml, respectively. The genome consists of a 7,688,855 bp linear chromosome, 6782 protein-coding sequences, and 68 tRNAs. Genomic analysis identified strain VCCM 22513 as Streptomyces parvulus and confirmed a highly conserved core genome and stability of S. parvulus under natural selection. Genome mining revealed the presence of genetic determinants involved in mycothiol and ergothioneine biosynthesis (26 genes), oxidative stress resistance (43 genes), osmoadaptation (87 genes), heat and cold stress (34 genes), aromatic compound degradation (55 genes). Further genome-wide comparison between S. parvulus VCCM 22513 and 11 Streptomyces genomes showed that VCCM 22513 possesses significantly higher copies of genes involved in mycothiol and ergothioneine biosynthesis. In support of this finding, the strain exhibited much resistance to 0.6–1.0 M H2O2 and 6% (w/v) NaCl as compared to Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels. In addition, the complete pathways for degradation of aromatic compounds including protocatechuate, gentisate, 4-hydroxyphenylpyruvate, cinnamate, 3-phenylpropionate, and styrene were only identified in the genome of VCCM 22513.
Conclusions
The present study revealed for the first time adaptive responses of mangrove endophytic S. parvulus VCCM 22513 to survive in hostile environment. The information shown here provided better understanding of underlying mechanisms related to adaptation and partially plant-microbe interaction of Streptomyces associated with mangrove plants.
Collapse
|
6
|
Laamarti M, Chemao-Elfihri MW, Essabbar A, Manni A, Kartti S, Alouane T, Temsamani L, Eljamali JE, Sbabou L, Ouadghiri M, Filali-Maltouf A, Belyamani L, Ibrahimi A. Genomic analysis of two Bacillus safensis isolated from Merzouga desert reveals desert adaptive and potential plant growth-promoting traits. Funct Integr Genomics 2022; 22:1173-1187. [PMID: 36175602 DOI: 10.1007/s10142-022-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
Deserts represent extreme environments for microorganisms, and conditions such as high soil salinity, nutrient deficiency, and increased levels of UV radiation make desert soil communities of high biotechnological potential. In this study, we isolated, sequenced, and assembled the genomes of Bacillus safensis strains BcP62 and Bcs93, to which we performed comparative genome analyses. Using the DDH and ANI of both strains with the available B. safensis genomes, we identified three potential subspecies within this group. Intra-species core genome phylogenetic analysis did not result in clustering genomes by niche type, with some exceptions. This study also revealed that the genomes of the analyzed strains possessed plant growth-promoting characteristics, most of which were conserved in all B. safensis strains. Furthermore, we highlight the genetic features of B. safensis BcP62 and Bcs93 related to survival in the Merzouga desert in Morocco. These strains could be potentially used in agriculture as PGPB in extreme environments, given their high tolerability to unfavorable conditions.
Collapse
Affiliation(s)
- Meriem Laamarti
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Mohammed Walid Chemao-Elfihri
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelmounim Essabbar
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Amina Manni
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Souad Kartti
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Tarek Alouane
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Loubna Temsamani
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Jamal-Eddine Eljamali
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco
| | - Mouna Ouadghiri
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco.,Emergency Department, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco. .,Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco.
| |
Collapse
|