1
|
de Weerd HA, Guala D, Gustafsson M, Synnergren J, Tegnér J, Lubovac-Pilav Z, Magnusson R. Latent space arithmetic on data embeddings from healthy multi-tissue human RNA-seq decodes disease modules. PATTERNS (NEW YORK, N.Y.) 2024; 5:101093. [PMID: 39568475 PMCID: PMC11573900 DOI: 10.1016/j.patter.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Computational analyses of transcriptomic data have dramatically improved our understanding of complex diseases. However, such approaches are limited by small sample sets of disease-affected material. We asked if a variational autoencoder trained on large groups of healthy human RNA sequencing (RNA-seq) data can capture the fundamental gene regulation system and generalize to unseen disease changes. Importantly, we found this model to successfully compress unseen transcriptomic changes from 25 independent disease datasets. We decoded disease-specific signals from the latent space and found them to contain more disease-specific genes than the corresponding differential expression analysis in 20 of 25 cases. Finally, we matched these disease signals with known drug targets and extracted sets of known and potential pharmaceutical candidates. In summary, our study demonstrates how data-driven representation learning enables the arithmetic deconstruction of the latent space, facilitating the dissection of disease mechanisms and drug targets.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
| | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
- Merck AB, 169 70 Solna, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Jane Synnergren
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jesper Tegnér
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, 171 76, Stockholm, Sweden
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
| | - Rasmus Magnusson
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
2
|
Kular L. The lung-brain axis in multiple sclerosis: Mechanistic insights and future directions. Brain Behav Immun Health 2024; 38:100787. [PMID: 38737964 PMCID: PMC11087231 DOI: 10.1016/j.bbih.2024.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/23/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with progressive lifelong disability. Current treatments are particularly effective at the early inflammatory stage of the disease but associate with safety concerns such as increased risk of infection. While clinical and epidemiological evidence strongly support the role of a bidirectional communication between the lung and the brain in MS in influencing disease risk and severity, the exact processes underlying such relationship appear complex and not fully understood. This short review aims to summarize key findings and future perspectives that might provide new insights into the mechanisms underpinning the lung-brain axis in MS.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Boris V, Vanessa V. Molecular systems biology approaches to investigate mechanisms of gut-brain communication in neurological diseases. Eur J Neurol 2023; 30:3622-3632. [PMID: 37038632 DOI: 10.1111/ene.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Whilst the incidence of neurological diseases is increasing worldwide, treatment remains mostly limited to symptom management. The gut-brain axis, which encompasses the communication routes between microbiota, gut and brain, has emerged as a crucial area of investigation for identifying new preventive and therapeutic targets in neurological disease. METHODS Due to the inter-organ, systemic nature of the gut-brain axis, together with the multitude of biomolecules and microbial species involved, molecular systems biology approaches are required to accurately investigate the mechanisms of gut-brain communication. High-throughput omics profiling, together with computational methodologies such as dimensionality reduction or clustering, machine learning, network inference and genome-scale metabolic models, allows novel biomarkers to be discovered and elucidates mechanistic insights. RESULTS In this review, the general concepts of experimental and computational methodologies for gut-brain axis research are introduced and their applications are discussed, mainly in human cohorts. Important aspects are further highlighted concerning rational study design, sampling procedures and data modalities relevant for gut-brain communication, strengths and limitations of methodological approaches and some future perspectives. CONCLUSION Multi-omics analyses, together with advanced data mining, are essential to functionally characterize the gut-brain axis and put forward novel preventive or therapeutic strategies in neurological disease.
Collapse
Affiliation(s)
- Vandemoortele Boris
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vermeirssen Vanessa
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Buzzao D, Castresana-Aguirre M, Guala D, Sonnhammer ELL. TOPAS, a network-based approach to detect disease modules in a top-down fashion. NAR Genom Bioinform 2022; 4:lqac093. [PMCID: PMC9706483 DOI: 10.1093/nargab/lqac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
A vast scenario of potential disease mechanisms and remedies is yet to be discovered. The field of Network Medicine has grown thanks to the massive amount of high-throughput data and the emerging evidence that disease-related proteins form ‘disease modules’. Relying on prior disease knowledge, network-based disease module detection algorithms aim at connecting the list of known disease associated genes by exploiting interaction networks. Most existing methods extend disease modules by iteratively adding connector genes in a bottom-up fashion, while top-down approaches remain largely unexplored. We have created TOPAS, an iterative approach that aims at connecting the largest number of seed nodes in a top-down fashion through connectors that guarantee the highest flow of a Random Walk with Restart in a network of functional associations. We used a corpus of 382 manually selected functional gene sets to benchmark our algorithm against SCA, DIAMOnD, MaxLink and ROBUST across four interactomes. We demonstrate that TOPAS outperforms competing methods in terms of Seed Recovery Rate, Seed to Connector Ratio and consistency during module detection. We also show that TOPAS achieves competitive performance in terms of biological relevance of detected modules and scalability.
Collapse
Affiliation(s)
- Davide Buzzao
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| | | | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| | | |
Collapse
|
5
|
Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C. Genetics of multiple sclerosis: lessons from polygenicity. Lancet Neurol 2022; 21:830-842. [PMID: 35963264 DOI: 10.1016/s1474-4422(22)00255-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Large-scale mapping studies have identified 236 independent genetic variants associated with an increased risk of multiple sclerosis. However, none of these variants are found exclusively in patients with multiple sclerosis. They are located throughout the genome, including 32 independent variants in the MHC and one on the X chromosome. Most variants are non-coding and seem to act through cell-specific effects on gene expression and splicing. The likely functions of these variants implicate both adaptive and innate immune cells in the pathogenesis of multiple sclerosis, provide pivotal biological insight into the causes and mechanisms of multiple sclerosis, and some of the variants implicated in multiple sclerosis also mediate risk of other autoimmune and inflammatory diseases. Genetics offers an approach to showing causality for environmental factors, through Mendelian randomisation. No single variant is necessary or sufficient to cause multiple sclerosis; instead, each increases total risk in an additive manner. This combined contribution from many genetic factors to disease risk, or polygenicity, has important consequences for how we interpret the epidemiology of multiple sclerosis and how we counsel patients on risk and prognosis. Ongoing efforts are focused on increasing cohort sizes, increasing diversity and detailed characterisation of study populations, and translating these associations into an understanding of the biology of multiple sclerosis.
Collapse
Affiliation(s)
- An Goris
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Neuroimmunology, Leuven, Belgium.
| | - Marijne Vandebergh
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Neuroimmunology, Leuven, Belgium
| | - Jacob L McCauley
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janna Saarela
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway; Institute for Molecular Medicine Finland and Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
de Weerd HA, Åkesson J, Guala D, Gustafsson M, Lubovac-Pilav Z. MODalyseR-a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data. BIOINFORMATICS ADVANCES 2022; 2:vbac006. [PMID: 36699378 PMCID: PMC9710626 DOI: 10.1093/bioadv/vbac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Motivation Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators. Results We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data. Availability and implementation MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Julia Åkesson
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, Solna 17121, Sweden,Merck AB, Solna 16970, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden,To whom correspondence should be addressed. or
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,To whom correspondence should be addressed. or
| |
Collapse
|