1
|
Yancey CE, Hart L, Hefferan S, Mohamed OG, Newmister SA, Tripathi A, Sherman DH, Dick GJ. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 2024; 9:e0033424. [PMID: 38916306 PMCID: PMC11264947 DOI: 10.1128/msystems.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sierra Hefferan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Ferrinho S, Connaris H, Mouncey NJ, Goss RJM. Compendium of Metabolomic and Genomic Datasets for Cyanobacteria: Mined the Gap. WATER RESEARCH 2024; 256:121492. [PMID: 38593604 DOI: 10.1016/j.watres.2024.121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Cyanobacterial blooms, producing toxic secondary metabolites, are becoming increasingly common phenomena in the face of rising global temperatures. They are the world's most abundant photosynthetic organisms, largely owing their success to a range of highly diverse and complex natural products possessing a broad spectrum of different bioactivities. Over 2600 compounds have been isolated from cyanobacteria thus far, and their characterisation has revealed unusual and useful chemistries and motifs including alkynes, halogens, and non-canonical amino acids. Genome sequencing of cyanobacteria lags behind natural product isolation, with only 19% of cyanobacterial natural products associated with a sequenced organism. Recent advances in meta(genomics) provide promise to narrow this gap and has also facilitated the uprise of combined genomic and metabolomic approaches, heralding a new era of discovery of novel compounds. Analyses of the datasets described within this manuscript reveal the asynchrony of current genomic and metabolomic data, highlight the chemical diversity of cyanobacterial natural products. Linked to this manuscript, we make these manually curated datasets freely accessible for the public to facilitate further research in this important area.
Collapse
Affiliation(s)
- Scarlet Ferrinho
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Helen Connaris
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rebecca J M Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Pineda-Rodriguez YY, Pompelli MF, Jarma-Orozco A, Rodríguez NV, Rodriguez-Paez LA. A New and Profitable Protocol to DNA Extraction in Limnospira maxima. Methods Protoc 2023; 6:62. [PMID: 37489429 PMCID: PMC10366785 DOI: 10.3390/mps6040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Limnospira maxima is a remarkable organism showing great potential as a versatile and sustainable food source, offering a powerful solution to address the pressing issues of malnutrition and undernourishment worldwide. L. maxima contains high amounts of proteins, vitamins, minerals, and essential fatty acids. It can be grown in both bioreactors and open systems; however, before considering industrial production, optimization studies of the cultivation must be conducted to obtain knowledge about the ideal environmental conditions. Additionally, for the molecular typing of L. maxima strains and their industrial scaling, high-quality and large quantity DNA extraction is required. Notwithstanding, DNA extraction from L. maxima can be challenging due to the low amount of DNA in cells and the presence of difficult-to-remove substances such as polysaccharides and polyphenols. In this study, the quality and quantity of DNA extracted from two types of L. maxima samples (Limnospira maxima strain SISCA accession GenBank: OR195505.1) were evaluated using three commercially available DNA extraction kits and two types of input biological material. The results showed that Pbact-P kit had the highest quantity and quality of DNA, while CTAB-P allowed for a higher quantity and quality of RNA, making them optimal protocols for nucleic acid extraction to improve PCR, rt-PCR, and genome sequencing of L. maxima compared with other extraction methods.
Collapse
Affiliation(s)
| | - Marcelo F Pompelli
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| | - Alfredo Jarma-Orozco
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| | - Novisel Veitía Rodríguez
- Instituto de Biotecnología de las Plantas, Universidad Central "Marta Abreu" de Las Villas, Santa Clara 54830, Cuba
| | - Luis Alfonso Rodriguez-Paez
- Laboratorio de Biología Molecular Aplicada (INVEPAR) de la Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería 230002, Colombia
| |
Collapse
|
4
|
Eusébio N, Castelo-Branco R, Sousa D, Preto M, D’Agostino P, Gulder TAM, Leão PN. Discovery and Heterologous Expression of Microginins from Microcystis aeruginosa LEGE 91341. ACS Synth Biol 2022; 11:3493-3503. [PMID: 36166626 PMCID: PMC9594780 DOI: 10.1021/acssynbio.2c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microginins are a large family of cyanobacterial lipopeptide protease inhibitors. A hybrid polyketide synthase/non-ribosomal peptide synthetase biosynthetic gene cluster (BGC) found in several microginin-producing strains─mic─was proposed to encode the production of microginins, based on bioinformatic analysis. Here, we explored a cyanobacterium, Microcystis aeruginosa LEGE 91341, which contains a mic BGC, to discover 12 new microginin variants. The new compounds contain uncommon amino acids, namely, homophenylalanine (Hphe), homotyrosine (Htyr), or methylproline, as well as a 3-aminodecanoic acid (Ada) residue, which in some variants was chlorinated at its terminal methyl group. We have used direct pathway cloning (DiPaC) to heterologously express the mic BGC from M. aeruginosa LEGE 91341 in Escherichia coli, which led to the production of several microginins. This proved that the mic BGC is, in fact, responsible for the biosynthesis of microginins and paves the way to accessing new variants from (meta)genome data or through pathway engineering.
Collapse
Affiliation(s)
- Nádia Eusébio
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Diana Sousa
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Marco Preto
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Paul D’Agostino
- Chair
of Technical Biochemistry, Technical University
of Dresden, Bergstraße
66, 01069 Dresden, Germany
| | - Tobias A. M. Gulder
- Chair
of Technical Biochemistry, Technical University
of Dresden, Bergstraße
66, 01069 Dresden, Germany
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal,
| |
Collapse
|
5
|
Hentschke GS, Ramos V, Pinheiro Â, Barreiro A, Costa MS, Rego A, Brule S, Vasconcelos VM, Leão PN. Zarconia navalis gen. nov., sp. nov., Romeriopsis navalis gen. nov., sp. nov. and Romeriopsis marina sp. nov., isolated from inter- and subtidal environments from northern Portugal. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The morphology, 16S rRNA gene phylogeny and 16S–23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and subtidal environments from north Portugal were studied, resulting in the description of Zarconia navalis gen. nov., sp. nov. (Oscillatoriales incertae sedis), Romeriopsis navalis gen. nov., sp. nov. (Leptolyngbyaceae) and Romeriopsis marina sp. nov., named under the International Code of Nomenclature for algae, fungi, and plants. No diacritical morphological characters were found for the new genera and species. The 16S rRNA gene maximum-likelihood and Bayesian phylogenies supported that the genus Zarconia is a member of the Oscillatoriales, morphologically similar to the genera
Microcoleus
and Phormidium, but distant from them. The genus Romeriopsis is positioned within the Leptolyngbyaceae (Synechococcales) and is closely related to
Alkalinema
. The secondary structures of the D1-D1′, Box B, V2 and V3 helices corroborate the phylogenetic results. Furthermore, our study supports previous observations of polyphyletic Oscillatoriales families and reinforces the need for their taxonomic revision.
Collapse
Affiliation(s)
- Guilherme S. Hentschke
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Vitor Ramos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Ângela Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - M. Sofia Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Sébastien Brule
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Vitor M. Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| |
Collapse
|