1
|
Wicki M, Brown DJ, Gurman PM, Raoul J, Legarra A, Swan AA. Combined genomic evaluation of Merino and Dohne Merino Australian sheep populations. Genet Sel Evol 2024; 56:69. [PMID: 39350072 PMCID: PMC11440750 DOI: 10.1186/s12711-024-00934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The Dohne Merino sheep was introduced to Australia from South Africa in the 1990s. It was primarily used in crosses with the Merino breed sheep to improve on attributes such as reproduction and carcass composition. Since then, this breed has continued to expand in Australia but the number of genotyped and phenotyped purebred individuals remains low, calling into question the accuracy of genomic selection. The Australian Merino, on the other hand, has a substantial reference population in a separate genomic evaluation (MERINOSELECT). Combining these resources could fast track the impact of genomic selection on the smaller breed, but the efficacy of this needs to be investigated. This study was based on a dataset of 53,663 genotypes and more than 2 million phenotypes. Its main objectives were (1) to characterize the genetic structure of Merino and Dohne Merino breeds, (2) to investigate the utility of combining their evaluations in terms of quality of predictions, and (3) to compare several methods of genetic grouping. We used the 'LR-method' (Linear Regression) for these assessments. RESULTS We found very low Fst values (below 0.048) between the different Merino lines and Dohne breed considered in our study, indicating very low genetic differentiation. Principal component analysis revealed three distinct groups, identified as purebred Merino, purebred Dohne, and crossbred animals. Considering the whole population in the reference led to the best quality of predictions and the largest increase in accuracy (from 'LR-method') from pedigree to genomic-based evaluations: 0.18, 0.14 and 0.16 for yearling fibre diameter (YFD), yearling greasy fleece weight (YGFW) and yearling liveweight (YWT), respectively. Combined genomic evaluations showed higher accuracies than the evaluation based on the Dohne reference only (accuracies increased by 0.16, 0.06 and 0.07 for YFD, YGFW, and YWT, respectively). For the combined genomic evaluations, metafounder models were more accurate than Unknown Parent Groups models (accuracies increased by 0.04, 0.04 and 0.06 for YFD, YGFW and YWT, respectively). CONCLUSIONS We found promising results for the future transition of the Dohne breed from pedigree to genomic selection. A combined genomic evaluation, with the MERINOSELECT evaluation in addition to using metafounders, is expected to enhance the quality of genomic predictions for the Dohne Merino breed.
Collapse
Affiliation(s)
- Marine Wicki
- INRAE, INP, UMR 1388 GenPhySE, 31326, Castanet-Tolosan, France.
- Institut de l'Elevage, 31321, Castanet-Tolosan, France.
| | - Daniel J Brown
- AGBU, A Joint Venture of NSW Department of Primary Industries and University of New-England, Armidale, Australia
| | - Phillip M Gurman
- AGBU, A Joint Venture of NSW Department of Primary Industries and University of New-England, Armidale, Australia
| | - Jérôme Raoul
- INRAE, INP, UMR 1388 GenPhySE, 31326, Castanet-Tolosan, France
- Institut de l'Elevage, 31321, Castanet-Tolosan, France
| | | | - Andrew A Swan
- AGBU, A Joint Venture of NSW Department of Primary Industries and University of New-England, Armidale, Australia
| |
Collapse
|
2
|
Machová K, Marina H, Arranz JJ, Pelayo R, Rychtářová J, Milerski M, Vostrý L, Suárez-Vega A. Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal 2023; 17:100690. [PMID: 36566708 DOI: 10.1016/j.animal.2022.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic.
| | - Héctor Marina
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Juan Jose Arranz
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Rocío Pelayo
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Jana Rychtářová
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Michal Milerski
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Luboš Vostrý
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic
| | - Aroa Suárez-Vega
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| |
Collapse
|
3
|
Genomic Population Structure of the Main Historical Genetic Lines of Spanish Merino Sheep. Animals (Basel) 2022; 12:ani12101327. [PMID: 35625173 PMCID: PMC9138057 DOI: 10.3390/ani12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Historical documentation shows that the Spanish Merino sheep was selected over many centuries due to the quality of wool, following which it was used to originate all other Merino breeds around the world, mainly by crossbreeding with local breeds. Today, the historical genetic lines that originated the Spanish Merino are still preserved in several closed herds in which they have been bred for nearly 200 years, maintaining their original genetic purity. Our study demonstrates, using a genomic approach, the exceptional genetic richness and variability of these lines, which are clearly differentiated from modern Merino breeds, and must therefore be protected to safeguard the large genetic pool they represent. Abstract According to historiographical documentation, the Romans first began to select Merino sheep in the Iberian Peninsula during the first century, with the aim of obtaining a breed appreciated for the quality of its wool. This process continued locally during the Middle Ages, when Spanish sheep were protected, and their export to foreign countries was banned. It was during the 16th century when individual Merino sheep were allowed to spread around the world to be used to improve the wool quality of local breeds. However, the wool crisis of the 1960s shifted the selection criteria of the Merino breed towards meat production at the expenses of wool. Consequently, individuals that display the genetic and phenotypic characteristics of those sheep originally bred in the kingdom of Spain in the Middle Ages are extremely difficult to find in commercial herds. In this study, we characterized the genetic basis of 403 individuals from the main historical Spanish Merino genetic lines (Granda, Hidalgo, Lopez-Montenegro, Maeso, Donoso and Egea), which were bred in isolation over the last 200 years, using a genomic approach based on genotyping data from the Axiom™ Ovine 50K SNP Genotyping Array. Our analysis included measuring population structure, genomic differentiation indexes, runs of homozygosity (ROH) patterns, and an analysis of molecular variance (AMOVA). The results showed large genetic differences between the historical lines, even though they belong to the same breed. In addition, ROH analysis showed differences due to increased inbreeding among the ancient generations compared with the modern Merino lines, confirming the breed’s ancestral and closed origin. However, our results also showed a high variability and richness within the Spanish historical Merino lines from a genetic viewpoint. This fact, together with their great ability to produce high-quality wool, suggests that ancestral Merino lines from Spain should be considered a valuable genetic population to be maintained as a resource for the improvement of wool-producing sheep breeds all around the world.
Collapse
|
4
|
Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, Vostry L, Curik I. Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach. Front Genet 2022; 13:887582. [PMID: 35615375 PMCID: PMC9126029 DOI: 10.3389/fgene.2022.887582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Collapse
Affiliation(s)
- Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| | - Boris Lukic
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Milan Oršanić
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Damir Ugarković
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Luboš Vostry
- Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| |
Collapse
|
5
|
Kao M, Van Wyk J, Scholtz A, Cloete J, Matebesi P, Cloete S. Breed and crossbreeding effects on growth, fitness and reproduction of commercial sheep in South Africa. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|