1
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
2
|
Haj Abdullah Alieh L, Cardoso de Toledo B, Hadarovich A, Toth-Petroczy A, Calegari F. Characterization of alternative splicing during mammalian brain development reveals the extent of isoform diversity and potential effects on protein structural changes. Biol Open 2024; 13:bio061721. [PMID: 39387301 DOI: 10.1242/bio.061721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Regulation of gene expression is critical for fate commitment of stem and progenitor cells during tissue formation. In the context of mammalian brain development, a plethora of studies have described how changes in the expression of individual genes characterize cell types across ontogeny and phylogeny. However, little attention has been paid to the fact that different transcripts can arise from any given gene through alternative splicing (AS). Considered a key mechanism expanding transcriptome diversity during evolution, assessing the full potential of AS on isoform diversity and protein function has been notoriously difficult. Here, we capitalize on the use of a validated reporter mouse line to isolate neural stem cells, neurogenic progenitors and neurons during corticogenesis and combine the use of short- and long-read sequencing to reconstruct the full transcriptome diversity characterizing neurogenic commitment. Extending available transcriptional profiles of the mammalian brain by nearly 50,000 new isoforms, we found that neurogenic commitment is characterized by a progressive increase in exon inclusion resulting in the profound remodeling of the transcriptional profile of specific cortical cell types. Most importantly, we computationally infer the biological significance of AS on protein structure by using AlphaFold2, revealing how radical protein conformational changes can arise from subtle changes in isoforms sequence. Together, our study reveals that AS has a greater potential to impact protein diversity and function than previously thought, independently from changes in gene expression.
Collapse
Affiliation(s)
| | | | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Germany
| |
Collapse
|
3
|
Lakhotia SC. C-value paradox: Genesis in misconception that natural selection follows anthropocentric parameters of 'economy' and 'optimum'. BBA ADVANCES 2023; 4:100107. [PMID: 37868661 PMCID: PMC10587719 DOI: 10.1016/j.bbadva.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
C-value paradox refers to the lack of correlation between biological complexity and the intuitively expected protein-coding genomic information or DNA content. Here I discuss five questions about this paradox: i) Do biologically complex organisms carry more protein-coding genes? ii) Does variable accumulation of selfish/ junk/ parasitic DNA underlie the c-value paradox? iii) Can nucleoskeletal or nucleotypic function of DNA explain the enigma of orders of magnitude high levels of DNA in some 'lower' taxa or in taxonomically related species? iv) Can the newly understood noncoding but functional DNA explain the c-value paradox? and, v) Does natural selection uniformly apply the anthropocentric parameters for 'optimum' and 'economy'? Answers to Q.1-5 are largely negative. Biology presents numerous 'anomalous' examples where the same end function/ phenotype is attained in different organisms through astoundingly diverse ways that appear 'illogical' in our perceptions. Such evolutionary oddities exist because natural selection, unlike a designer, exploits random and stochastic events to modulate the existing system. Consequently, persistence of the new-found 'solution/s' often appear bizarre, uneconomic, and therefore, paradoxical to human logic. The unexpectedly high c-values in diverse organisms are irreversible evolutionary accidents that persisted, and the additional DNA often got repurposed over the evolutionary time scale. Therefore, the c-value paradox is a redundant issue. Future integrative biological studies should address evolutionary mechanisms and processes underlying sporadic DNA expansions/ contractions, and how the newly acquired DNA content has been repurposed in diverse groups.
Collapse
Affiliation(s)
- Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Huang X, Li H, Zhan A. Interplays between cis- and trans-Acting Factors for Alternative Splicing in Response to Environmental Changes during Biological Invasions of Ascidians. Int J Mol Sci 2023; 24:14921. [PMID: 37834365 PMCID: PMC10573349 DOI: 10.3390/ijms241914921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the cis- and trans-acting factors influencing AS variation remain unclear. Using the model invasive congeneric ascidians, Ciona robusta, and Ciona savignyi, we compared their AS responses to environmental changes and explored the potential determinants. Our findings unveiled swift and dynamic AS changes in response to environmental challenges, and differentially alternative spliced genes (DASGs) were functionally enriched in transmembrane transport processes. Interestingly, both the prevalence and level of AS in C. robusta were lower than those observed in C. savignyi. Furthermore, these two indices were higher under temperature stresses compared to salinity stresses in C. savignyi. All the observed patterns underscore the species-specific and environmental context-dependent AS responses to environmental challenges. The dissimilarities in genomic structure and exon/intron size distributions between these two species likely contributed to the observed AS variation. Moreover, we identified a total of 11 and 9 serine/arginine-rich splicing factors (SRSFs) with conserved domains and gene structures in the genomes of C. robusta and C. savignyi, respectively. Intriguingly, our analysis revealed that all detected SRSFs did not exhibit prevalent AS regulations. Instead, we observed AS control over a set of genes related to splicing factors and spliceosome components. Altogether, our results elucidate species-specific and environmental challenge-dependent AS response patterns in closely related invasive ascidians. The identified splicing factors and spliceosome components under AS control offer promising candidates for further investigations into AS-mediated rapid responses to environmental challenges complementary to SRSFs.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
| | - Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
5
|
Centa JL, Stratton MP, Pratt MA, Osterlund Oltmanns JR, Wallace DG, Miller SA, Weimer JM, Hastings ML. Protracted CLN3 Batten disease in mice that genetically model an exon-skipping therapeutic approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:15-27. [PMID: 37359347 PMCID: PMC10285469 DOI: 10.1016/j.omtn.2023.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Genetic mutations that disrupt open reading frames and cause translation termination are frequent causes of human disease and are difficult to treat due to protein truncation and mRNA degradation by nonsense-mediated decay, leaving few options for traditional drug targeting. Splice-switching antisense oligonucleotides offer a potential therapeutic solution for diseases caused by disrupted open reading frames by inducing exon skipping to correct the open reading frame. We have recently reported on an exon-skipping antisense oligonucleotide that has a therapeutic effect in a mouse model of CLN3 Batten disease, a fatal pediatric lysosomal storage disease. To validate this therapeutic approach, we generated a mouse model that constitutively expresses the Cln3 spliced isoform induced by the antisense molecule. Behavioral and pathological analyses of these mice demonstrate a less severe phenotype compared with the CLN3 disease mouse model, providing evidence that antisense oligonucleotide-induced exon skipping can have therapeutic efficacy in treating CLN3 Batten disease. This model highlights how protein engineering through RNA splicing modulation can be an effective therapeutic approach.
Collapse
Affiliation(s)
- Jessica L. Centa
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Matthew P. Stratton
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven A. Miller
- Psychology Department, College of Health Professionals, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Michelle L. Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Lobas AA, Solovyeva EM, Levitsky LI, Goncharov AO, Lyssuk EY, Larin SS, Moshkovskii SA, Gorshkov MV. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. Int J Mol Sci 2023; 24:2466. [PMID: 36768787 PMCID: PMC9916885 DOI: 10.3390/ijms24032466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton O. Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Elena Y. Lyssuk
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergey S. Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Loewenthal G, Wygoda E, Nagar N, Glick L, Mayrose I, Pupko T. The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns. Open Biol 2022; 12:220223. [PMID: 36514983 PMCID: PMC9748784 DOI: 10.1098/rsob.220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multimodality of intron distribution.
Collapse
Affiliation(s)
- Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elya Wygoda
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natan Nagar
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lior Glick
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|