1
|
Shi X, Zhang Y, Yang J, Chen Y. A Genomic Sequence Resource of Diaporthe mahothocarpus GZU-Y2 Causing Leaf Spot Blight in Camellia oleifera. J Fungi (Basel) 2024; 10:630. [PMID: 39330390 PMCID: PMC11433127 DOI: 10.3390/jof10090630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Diaporthe mahothocarpus GZU-Y2, a new pathogen responsible for leaf spot blight disease, leads to significant damage and economic losses in some Camellia oleifera plantations. The current study annotated the genome of the D. mahothocarpus isolate GZU-Y2 to advance our knowledge of the pathogen and facilitate improved disease management of leaf spot blight. The initial Pacbio-Illumina hybrid draft genome for GZU-Y2 resulted in a high-quality assembly with 62 contigs, characterized by an N50 length of 7.07 Mb. The complete genome of isolate GZU-Y2 was 58.97 Mbp, with a GC content of 50.65%. Importantly, the assembly exhibits remarkable integrity, with 97.93% of complete BUSCO validating genome completeness. The prediction results showed that a total of 15,918 protein-coding genes were annotated using multiple bioinformatics databases. The genome assembly and annotation resource reported here will be useful for the further study of fungal infection mechanisms and pathogen-host interaction.
Collapse
Affiliation(s)
- Xulong Shi
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yu Zhang
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing Yang
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yunze Chen
- School of Biological Sciences, Guizhou Education University, Wudang District, Guiyang 550018, China
| |
Collapse
|
2
|
Liu T, Zhou Z, Luo C, Luo H, Tang J, Shi X, Li D, Zhang Q, Li J, Xia Y, Song N, Yi T. Elucidation of mechanisms underlying active oxygen burst in Citrus sinensis after Diaporthe citri infection using transcriptome analysis. Front Microbiol 2024; 15:1425441. [PMID: 39268534 PMCID: PMC11390498 DOI: 10.3389/fmicb.2024.1425441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Reactive oxygen species (ROS) generation is a common disease defense mechanism in plants. However, it is unclear whether Citrus host activates defense response against Diaporthe citri causing citrus melanose disease by producing ROS, and the underlying molecular mechanisms are unknown. Methods DAB staining and RNA-Seq technology were used to compare the active oxygen burst and differential gene expression, respectively, in uninfected and infected Citrus sinensis leaves at different time points during D. citri infection in vivo. The functions of CsRBOH (a significant DEG) were confirmed in N. benthamiana through the Agrobacterium-mediated transient expression system. Results DAB staining indicated that C. sinensis initiated defense against D. citri infection within 24 h by generating ROS. Illumina sequencing revealed 25,557 expressed genes of C. sinensis. The most upregulated DEGs (n = 1,570) were identified 72 h after fungal inoculation (sample denoted as CD72). In the CD72 vs. Cs (samples at 0 h after fungal inoculation) comparison, the KEGG pathway category with the highest number of genes (n = 62) and most significant enrichment was Protein processing in endoplasmic reticulum, followed by Glutathione metabolism and MAPK signaling pathway-plant. GO analysis revealed that the DEGs of CD72 vs. Cs related to active oxygen burst and chitin recognition were significantly grouped into the regulation of biological processes and molecular functions, with GO terms including response to ROS, response to fungus, and oxidoreductase activity. Remarkably, CsRBOH was significantly enriched in the GO and KEGG analyses, and its expression pattern in qRT-PCR and DAB staining results were consistent. Among the 63 ROS-related DEGs, HSP genes and genes associated with the peroxidase family were highly significant as revealed by protein-protein interaction networks. Furthermore, ROS accumulation, cell death, and upregulation of defense-related genes were observed in N. benthamiana leaves with CsRBOH expressed through the Agrobacterium-mediated transient expression system. Conclusion Our findings suggested that C. sinensis activates CsRBOH and ROS-related genes, leading to ROS accumulation to resist the invasion by D. citri. This study laid the foundation for future research on molecular mechanisms and breeding of C. sinensis cultivars resistant to citrus melanose.
Collapse
Affiliation(s)
- Tiantian Liu
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Zehua Zhou
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Luo
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Hua Luo
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Jun Tang
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Xiaojiang Shi
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Diping Li
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Qiong Zhang
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Jin Li
- Shaoyang Academy of Agricultural Sciences, Shaoyang, Hunan, China
| | - Yonggang Xia
- Human Academy of Forestry, Changsha, Hunan, China
| | - Na Song
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Tuyong Yi
- Hunan Provincial Key Laboratory of Plant Diseases and Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ramos-Lizardo GN, Mucherino-Muñoz JJ, Aguiar ERGR, Pirovani CP, Corrêa RX. A repertoire of candidate effector proteins of the fungus Ceratocystis cacaofunesta. Sci Rep 2023; 13:16368. [PMID: 37773261 PMCID: PMC10542334 DOI: 10.1038/s41598-023-43117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
The genus Ceratocystis includes many phytopathogenic fungi that affect different plant species. One of these is Ceratocystis cacaofunesta, which is pathogenic to the cocoa tree and causes Ceratocystis wilt, a lethal disease for the crop. However, little is known about how this pathogen interacts with its host. The knowledge and identification of possible genes encoding effector proteins are essential to understanding this pathosystem. The present work aimed to predict genes that code effector proteins of C. cacaofunesta from a comparative analysis of the genomes of five Ceratocystis species available in databases. We performed a new genome annotation through an in-silico analysis. We analyzed the secretome and effectorome of C. cacaofunesta using the characteristics of the peptides, such as the presence of signal peptide for secretion, absence of transmembrane domain, and richness of cysteine residues. We identified 160 candidate effector proteins in the C. cacaofunesta proteome that could be classified as cytoplasmic (102) or apoplastic (58). Of the total number of candidate effector proteins, 146 were expressed, presenting an average of 206.56 transcripts per million. Our database was created using a robust bioinformatics strategy, followed by manual curation, generating information on pathogenicity-related genes involved in plant interactions, including CAZymes, hydrolases, lyases, and oxidoreductases. Comparing proteins already characterized as effectors in Sordariomycetes species revealed five groups of protein sequences homologous to C. cacaofunesta. These data provide a valuable resource for studying the infection mechanisms of these pathogens in their hosts.
Collapse
Affiliation(s)
- Gabriela N Ramos-Lizardo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Jonathan J Mucherino-Muñoz
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Eric R G R Aguiar
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
4
|
Mena E, Reboledo G, Stewart S, Montesano M, Ponce de León I. Comparative analysis of soybean transcriptional profiles reveals defense mechanisms involved in resistance against Diaporthe caulivora. Sci Rep 2023; 13:13061. [PMID: 37567886 PMCID: PMC10421924 DOI: 10.1038/s41598-023-39695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Silvina Stewart
- Programa Nacional de Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
5
|
Petrović K, Šućur Elez J, Crnković M, Krsmanović S, Rajković M, Kuzmanović B, Malenčić Đ. The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex. PLANTS (BASEL, SWITZERLAND) 2023; 12:2896. [PMID: 37631108 PMCID: PMC10457839 DOI: 10.3390/plants12162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Oxidative stress in soybean plants infected with Diaporthe isolates was evaluated in order to select (1) the least aggressive inoculation method, (2) to determine the most aggressive Diaporthe isolate, and (3) to determine the most tolerant soybean cultivar to this isolate. Based on the present malondialdehyde (MDA) content, the main end product of the lipid peroxidation process, and the biomarker for oxidative stress, the mycelium contact method was chosen as the least aggressive inoculation method, compared to the toothpick method and plug method. The activity of the antioxidant enzymes (superoxide-dismutase (SOD), catalase (CAT), and peroxidase (PX)), the reduced glutathione (GSH) content, and the level of lipid peroxidation (LP) were measured in soybean cv. Sava infected by five different Diaporthe species (DPM1F-D. aspalathi, DPC/KR19-D. caulivora, DPC004NY15-D. eres, 18-DIA-SOY-14-D. gulyae, and PL157A-D. longicolla). The most pathogenic Diaporthe species to cv. Sava was D. eres. The screening of the antioxidant enzymes activity in the leaves of 12 different soybean cultivars (Altona, Atlas, Capital, Chico, CX134, Favorit, Lakota, McCall, Morsoy, Strain, Rubin, and Victoria) infected with D. eres by the mycelium contact inoculation method showed that Capital, McCall, and Morsoy were the cultivars with the highest tolerance to D. eres, followed by Chico, Favorit, Lakota, and Rubin. The most sensitive cultivars were Atlas, CX134, Victoria, and Strain.
Collapse
Affiliation(s)
- Kristina Petrović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Breeding Department, Maize Research Institute, 11185 Belgrade, Serbia
- BioSense Institute, University of Novi Sad, 21101 Novi Sad, Serbia
| | - Jovana Šućur Elez
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Marina Crnković
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Slobodan Krsmanović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Sector for Plant Nutrition, Agromarket BiH, 76300 Bijeljina, Bosnia and Herzegovina
| | - Miloš Rajković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Department for Research and Development in Agriculture, Institute of Medicinal Plant Research “Dr. Josif Pančić”, 11000 Belgrade, Serbia
| | - Boris Kuzmanović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Đorđe Malenčić
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| |
Collapse
|
6
|
The genome of a Far Eastern isolate of Diaporthe caulivora, a soybean fungal pathogen. Appl Microbiol Biotechnol 2023; 107:1311-1327. [PMID: 36650392 DOI: 10.1007/s00253-023-12370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Diaporthe caulivora is an economically important fungal pathogen and a causal agent of soybean stem canker and seed decay. Here, the genome of a Russian Far Eastern isolate of D. caulivora was sequenced, assembled, and announced. Assembly quality was enough for advanced annotation, including prediction of potential disease-related genes encoding virulence factors and molecular determinants contributing to pathogen-host selection, interactions, and adaptation. Comparative analysis of 15 Diaporthe species was conducted regarding general genome properties, collinearity, and proteomes, and included detailed investigation of interspersed repeats. A notable feature of this analysis is a high recombinant variability of Diaporthe genomes, determined by the number and distribution of interspersed repeats, which also proved to be responsible for the diversity of GC content and genome size. This variability is assumed the main determinant of the divergence of Diaporthe genomes. A Bayesian multi-gene phylogeny was inferred for the 15 Diaporthe species on the basis of twenty thousand polymorphic sites of > 100 orthologous genes using independently adjusted evolutionary models. This allowed for the most accurate determination of evolutionary relationships and species boundaries for effective reporting about these plant pathogens. The evidence, obtained by different genome analysis techniques, implies the host-independent evolution of Diaporthe species. KEY POINTS: • The genome of a Far Eastern isolate of D. caulivora was announced. • A high degree of recombinant variability determines genomic divergence in Diaporthe genus. • The multi-gene phylogeny implies host-independent evolution of Diaporthe species.
Collapse
|
7
|
Cheng Z, Lv X, Duan C, Zhu H, Wang J, Xu Z, Yin H, Zhou X, Li M, Hao Z, Li F, Li X, Weng J. Pathogenicity Variation in Two Genomes of Cercospora Species Causing Gray Leaf Spot in Maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:14-25. [PMID: 36251001 DOI: 10.1094/mpmi-06-22-0138-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The gray leaf spots caused by Cercospora spp. severely affect the yield and quality of maize. However, the evolutionary relation and pathogenicity variation between species of the Cercospora genus is largely unknown. In this study, we constructed high-quality reference genomes by nanopore sequencing two Cercospora species, namely, C. zeae-maydis and C. zeina, with differing pathogenicity, collected from northeast (Liaoning [LN]) and southeast (Yunnan [YN]) China, respectively. The genome size of C. zeae-maydis-LN is 45.08 Mb, containing 10,839 annotated genes, whereas that of Cercospora zeina-YN is 42.18 Mb, containing 10,867 annotated genes, of which approximately 86.58% are common in the two species. The difference in their genome size is largely attributed to increased long terminal repeat retrotransposons of 3.8 Mb in total length in C. zeae-maydis-LN. There are 41 and 30 carbohydrate-binding gene subfamilies identified in C. zeae-maydis-LN and C. zeina-YN, respectively. A higher number of carbohydrate-binding families found in C. zeae-maydis-LN, and its unique CBM4, CBM37, and CBM66, in particular, may contribute to variation in pathogenicity between the two species, as the carbohydrate-binding genes are known to encode cell wall-degrading enzymes. Moreover, there are 114 and 107 effectors predicted, with 47 and 46 having unique potential pathogenicity in C. zeae-maydis-LN and C. zeina-YN, respectively. Of eight effectors randomly selected for pathogenic testing, five were found to inhibit cell apoptosis induced by Bcl-2-associated X. Taken together, our results provide genomic insights into variation in pathogenicity between C. zeae-maydis and C. zeina. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangling Lv
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Canxing Duan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hanyong Zhu
- Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, 663000, China
| | - Jianjun Wang
- Corn Research Institute, Shanxi Agricultural University, Xinzhou, Shanxi, 030600, China
| | - Zhennan Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifei Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Xiaohang Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuafang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fenghai Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, 110161, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Zhang SQ, Wang JP, Zhang FM, Yao LL, Li BX, Li YN, Gan D, Mei RF, Cai L, Ding ZT. Investigations of specialised metabolites of endophyte Diaporthe destruens hosted in Illigera orbiculata C. Y. Wu. PHYTOCHEMISTRY 2022; 203:113357. [PMID: 35970436 DOI: 10.1016/j.phytochem.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A chemical investigation of the endophytic fungus Diaporthe destruens from the Hernandiaceae plant Illigera orbiculata C. Y. Wu collected from southern Yunnan Province, China, led to the isolation of six undescribed compounds, including two azaphilone analogs, which are a pair of epimers (13R-hydroxy-chermesinone A and 13S-hydroxy-chermesinone A); a pyrrole derivative (1-(4-(methoxymethyl)-1H-pyrrol-3-yl)ethan-1-one); an isoindolone derivative (4-hydroxy-6-methoxyisoindolin-1-one); a benzylbenzene derivative (destruensine A) and a conjectural fragment of polyketide ((2R,4R)-2-(methoxymethyl)pentane-1,4-diol) along with nine known compounds. Their structures were elucidated by spectroscopic methods and HRESIMS, and the absolute configurations were further confirmed by electronic circular dichroism (ECD) and chemical derivatization. The antimicrobial activities, anti-acetylcholinesterase activities, antiproliferation, and NO production inhibitory effects of compounds 1-15 were evaluated.
Collapse
Affiliation(s)
- Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jia-Peng Wang
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Feng-Mei Zhang
- R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, 650231, People's Republic of China
| | - Lin-Lin Yao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bing-Xian Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Ni Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dong Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Rui-Feng Mei
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; College of Pharmacy, Dali University, Dali, 671003, People's Republic of China.
| |
Collapse
|
9
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|