1
|
Li H, Liu Y, Meng F, Chen J, Han X. Adrenarche-accompanied rise of adrenal sex steroid precursors prevents NAFLD in Young Female rats by converting into active androgens and inactivating hepatic Srebf1 signaling. BMC Genomics 2024; 25:190. [PMID: 38369486 PMCID: PMC10875776 DOI: 10.1186/s12864-024-10107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common cause of chronic liver disease in children and adolescents, but its etiology remains largely unknown. Adrenarche is a critical phase for hormonal changes, and any disturbance during this period has been linked to metabolic disorders, including obesity and dyslipidemia. However, whether there is a causal linkage between adrenarche disturbance and the increasing prevalence of NAFLD in children remains unclear. RESULTS Using the young female rat as a model, we found that the liver undergoes a transient slowdown period of growth along with the rise of adrenal-derived sex steroid precursors during adrenarche. Specifically blocking androgen actions across adrenarche phase using androgen receptor antagonist flutamide largely increased liver weight by 47.97% and caused marked fat deposition in liver, thus leading to severe NAFLD in young female rats. Conversely, further administrating nonaromatic dihydrotestosterone (DHT) into young female rats across adrenarche phase could effectively reduce liver fat deposition. But, administration of the aromatase inhibitor, formestane across adrenarche had minimal effects on hepatic de novo fatty acid synthesis and liver fat deposition, suggesting adrenal-derived sex steroid precursors exert their anti-NAFLD effects in young females by converting into active androgens rather than into active estrogens. Mechanistically, transcriptomic profiling and integrated data analysis revealed that active androgens converted from the adrenal sex steroid precursors prevent NAFLD in young females primarily by inactivating hepatic sterol regulatory element-binding transcription factor 1 (Srebf1) signaling. CONCLUSIONS We firstly evidenced that adrenarche-accompanied rise of sex steroid precursors plays a predominant role in preventing the incidence of NAFLD in young females by converting into active androgens and inactivating hepatic Srebf1 signaling. Our novel finding provides new insights into the etiology of NAFLD and is crucial in developing effective prevention and management strategies for NAFLD in children.
Collapse
Affiliation(s)
- Haoqing Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yingyu Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Junan Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
2
|
Valente-Santos J, Vitorino R, Sousa-Mendes C, Oliveira P, Colaço B, Faustino-Rocha AI, Neuparth MJ, Leite-Moreira A, Duarte JA, Ferreira R, Amado F. Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome. Int J Mol Sci 2023; 25:550. [PMID: 38203721 PMCID: PMC10778877 DOI: 10.3390/ijms25010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The salivary glands play a central role in the secretion of saliva, whose composition and volume affect oral and overall health. A lesser-explored dimension encompasses the possible changes in salivary gland proteomes in response to fluctuations in sex hormone levels. This study aimed to examine the effects of chronic exposure to testosterone on salivary gland remodeling, particularly focusing on proteomic adaptations. Therefore, male Wistar rats were implanted with subcutaneous testosterone-releasing devices at 14 weeks of age. Their submandibular glands were histologically and molecularly analyzed 47 weeks later. The results underscored a significant increase in gland mass after testosterone exposure, further supported by histologic evidence of granular duct enlargement. Despite increased circulating sex hormones, there was no detectable shift in the tissue levels of estrogen alpha and androgen receptors. GeLC-MS/MS and subsequent bioinformatics identified 308 proteins in the submandibular glands, 12 of which were modulated by testosterone. Of note was the pronounced upregulation of Klk3 and the downregulation of Klk6 and Klk7 after testosterone exposure. Protein-protein interaction analysis with the androgen receptor suggests that Klk3 is a potential target of androgenic signaling, paralleling previous findings in the prostate. This exploratory analysis sheds light on the response of salivary glands to testosterone exposure, providing proteome-level insights into the associated weight and histological changes.
Collapse
Affiliation(s)
- João Valente-Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cláudia Sousa-Mendes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.-M.); (A.L.-M.)
| | - Paula Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (P.O.); (A.I.F.-R.)
| | - Bruno Colaço
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Ana I. Faustino-Rocha
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (P.O.); (A.I.F.-R.)
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology, University of Évora, 7006-554 Évora, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; (M.J.N.); (J.A.D.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.-M.); (A.L.-M.)
| | - José Alberto Duarte
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; (M.J.N.); (J.A.D.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.-S.); (R.F.)
| |
Collapse
|