1
|
Kim J, Rahman MM, Han C, Shin J, Ahn SJ. Chromosome-level genome assembly and comparative genomics shed light on Helicoverpa assulta ecology and pest management. PEST MANAGEMENT SCIENCE 2024; 80:5440-5451. [PMID: 38942610 DOI: 10.1002/ps.8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The Oriental tobacco budworm, Helicoverpa assulta, a specialist herbivorous insect that exclusively feeds on plants of the Solanaceae family, causes considerable damage to crops, such as tobacco and hot pepper. The absence of a genome sequence for this species hinders further research on its pest management and ecological adaptation. RESULTS Here, we present a high-quality chromosome-level genome of a Korean strain of H. assulta (Pyeongchang strain, K18). The total assembly spans 424.4 Mb with an N50 length of 14.54 Mb and 37% GC content. The assembled genome (ASM2961881v1) comprises 31 chromosomes, similar to other congeneric generalist species including H. armigera and H. zea. In terms of genomic assembly quality, the complete BUSCOs and repeat content accounted for 98.3% and 33.01% of the genome, respectively. Based on this assembly, 19 485 protein-coding genes were predicted in the genome annotation. A comparative analysis was conducted using the identified number of protein-coding genes in H. armigera (24154) and H. zea (23696). Out of the 19 485 predicted genes, 137 genes in 15 orthogroups were found to have expanded significantly in H. assulta, while 149 genes in 95 orthogroups contracted rapidly. CONCLUSION This study revealed specific gene expansions and contractions in H. assulta compared to those in its close relatives, indicating potential adaptations related to its specialized feeding habits. Also, the comparative genome analysis provides valuable insights for the integrated pest management of H. assulta and other globally significant pests in the Heliothinae subfamily. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Jiyeong Shin
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
2
|
Yesaya A, Zhang L, Wu C, Fu Y, Zhang J, An J, Xiao Y. The chromosomal-scale genome sequencing and assembly of Athetis lepigone. Sci Data 2024; 11:338. [PMID: 38580759 PMCID: PMC10997617 DOI: 10.1038/s41597-024-03136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
Athetis lepigone is an emerging highly polyphagous insect pest reported to cause crop damage in several European and Asian countries. However, our understanding of its genetic adaptation mechanisms has been limited due to lack of high-quality genetic resources. In this study, we present a chromosomal-level genome of A. lepigone, representing the first species in the genus of Athetis. We employed PacBio long-read sequencing and Hi-C technologies to generate 612.49 Mb genome assembly which contains 42.43% repeat sequences with a scaffold N50 of 20.9 Mb. The contigs were successfully clustered into 31 chromosomal-size scaffolds with 37% GC content. BUSCO assessment revealed a genome completeness of 97.4% with 96.3 identified as core Arthropoda single copy orthologs. Among the 17,322 genes that were predicted, 15,965 genes were functionally annotated, representing a coverage of 92.17%. Furthermore, we revealed 106 P450, 37 GST, 27 UGT, and 74 COE gene families in the genome of A. lepigone. This genome provides a significant and invaluable genomic resource for further research across the entire genus of Athetis.
Collapse
Affiliation(s)
- Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Yiheng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 530005, Nanning, China
| | - Ji Zhang
- Sanya Nanfan Research Institute and College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Jingjie An
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Canter of Hebei Province, International Science and Technology Joint Research Canter on IPM of Hebei Province, Baoding, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
3
|
Yu B, Dong S, Jiang X, Qiao L, Chen J, Li T, Pan G, Zhou Z, Li C. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. INSECTS 2023; 14:932. [PMID: 38132605 PMCID: PMC10743513 DOI: 10.3390/insects14120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Lepidoptera is one of the most speciose insect orders, causing enormous damage to agricultural and forest crops. Although genome editing has been achieved in a few Lepidoptera for insect controls, most techniques are still limited. Here, by injecting female pupae of the Lepidoptera model species, Bombyx mori, gene editing was established using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) control technique. We identified a B. mori oocytes-targeting peptide ligand (BmOTP, a 29 aa of vitellogenin N-terminal of silkworms) with a highly conserved sequence in lepidopteran insects that could efficiently deliver mCherry into oocytes. When BmOTP was fused to CRISPR-associated protein 9 (Cas9) and the BmOTP-Cas9 ribonucleoprotein complex was injected into female pupae, heritable editing of the offspring was achieved in the silkworms. Compared with embryo microinjection, individual injection is more convenient and eliminates the challenge of injecting extremely small embryos. Our results will significantly facilitate the genetic manipulation of other lepidopteran insects, which is essential for advancing lepidopteran pest control.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Sichen Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Xiaoyu Jiang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Liang Qiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Han C, Rahman MM, Shin J, Kim JH, Lee SH, Kwon M, Timm AE, Ramasamy S, Lee Y, Kang S, Park S, Kim J. Exaptation of I4760M mutation in ryanodine receptor of Spodoptera exigua (Lepidoptera: Noctuidae): Lessons from museum and field samples. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105579. [PMID: 37666604 DOI: 10.1016/j.pestbp.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Since 2007, diamide insecticides have been widely used in Korea to control various types of lepidopteran pests including Spodoptera exigua. For nearly a decade, diamide resistance in field populations of S. exigua across 18 localities has been monitored using bioassays. Despite their short history of use, resistance to diamide insecticides has emerged. Based on the LC50 values, some field populations showed a higher level of resistance to chlorantraniliprole, a diamide insecticide, compared to that of the susceptible strain, although regional and temporal variations were observed. To investigate resistance at a molecular level, we examined three mutations (Y4701C, I4790M, and G4946E) in the ryanodine receptor (RyR), which is the primary mechanism underlying diamide insecticide resistance. DNA sequencing showed that only the I4790M mutation was found in most field populations. As resistance levels varied significantly despite the uniform presence of the I4790M mutation, we considered the presence of another resistance factor. Further, the I4790M mutation was also found in S. exigua specimens collected prior to the commercialization of diamide insecticides in Korea as well as in other countries, such as the USA. This finding led us to hypothesize that the I4790M mutation were predisposed in field populations owing to selection factors other than diamide use. For further clarification, we conducted whole-genome sequencing of S. exigua (449.83 Mb) and re-sequencing of 18 individual whole genomes. However, no additional non-synonymous mutations were detected in the RyR-coding region. Therefore, we concluded that the high level of diamide insecticide resistance in Korean S. exigua is not caused by mutations at the target site, RyR, but is attributed to other factors that need to be investigated in future studies.
Collapse
Affiliation(s)
- Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea.
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh.
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University, Seoul 03080, Republic of Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Alicia E Timm
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Youngsu Lee
- Gyeonggi Provincial Agricultural Research and Extension Services, Republic of Korea.
| | - Sera Kang
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Suhyeong Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, Republic of Korea.
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon 24341, Republic of Korea; Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Plant Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|