1
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
2
|
Kuchinski KS, Coombe M, Mansour SC, Cortez GAP, Kalhor M, Himsworth CG, Prystajecky NA. Targeted genomic sequencing of avian influenza viruses in wetland sediment from wild bird habitats. Appl Environ Microbiol 2024; 90:e0084223. [PMID: 38259077 PMCID: PMC10880596 DOI: 10.1128/aem.00842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Diverse influenza A viruses (IAVs) circulate in wild birds, including highly pathogenic strains that infect poultry and humans. Consequently, surveillance of IAVs in wild birds is a cornerstone of agricultural biosecurity and pandemic preparedness. Surveillance is traditionally done by testing wild birds directly, but obtaining these specimens is labor intensive, detection rates can be low, and sampling is often biased toward certain avian species. As a result, local incursions of dangerous IAVs are rarely detected before outbreaks begin. Testing environmental specimens from wild bird habitats has been proposed as an alternative surveillance strategy. These specimens are thought to contain diverse IAVs deposited by a broad range of avian hosts, including species that are not typically sampled by surveillance programs. To enable this surveillance strategy, we developed a targeted genomic sequencing method for characterizing IAVs in these challenging environmental specimens. It combines custom hybridization probes, unique molecular index-based library construction, and purpose-built bioinformatic tools, allowing IAV genomic material to be enriched and analyzed with single-fragment resolution. We demonstrated our method on 90 sediment specimens from wetlands around Vancouver, Canada. We recovered 2,312 IAV genome fragments originating from all eight IAV genome segments. Eleven hemagglutinin subtypes and nine neuraminidase subtypes were detected, including H5, the current global surveillance priority. Our results demonstrate that targeted genomic sequencing of environmental specimens from wild bird habitats could become a valuable complement to avian influenza surveillance programs.IMPORTANCEIn this study, we developed genome sequencing tools for characterizing avian influenza viruses in sediment from wild bird habitats. These tools enable an environment-based approach to avian influenza surveillance. This could improve early detection of dangerous strains in local wild birds, allowing poultry producers to better protect their flocks and prevent human exposures to potential pandemic threats. Furthermore, we purposefully developed these methods to contend with viral genomic material that is diluted, fragmented, incomplete, and derived from multiple strains and hosts. These challenges are common to many environmental specimens, making these methods broadly applicable for genomic pathogen surveillance in diverse contexts.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Coombe
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Sarah C Mansour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabrielle Angelo P Cortez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marzieh Kalhor
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea G Himsworth
- Animal Health Centre, Ministry of Agriculture and Food, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Zufan SE, Mercoulia K, Kwong JC, Judd LM, Howden BP, Seemann T, Stinear TP. High-performance enrichment-based genome sequencing to support the investigation of hepatitis A virus outbreaks. Microbiol Spectr 2024; 12:e0283423. [PMID: 38018979 PMCID: PMC10783085 DOI: 10.1128/spectrum.02834-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE This proof-of-concept study introduces a hybrid capture oligo panel for whole-genome sequencing of all six human pathogenic hepatitis A virus (HAV) subgenotypes, exhibiting a higher sensitivity than some conventional genotyping assays. The ability of hybrid capture to enrich multiple targets allows for a single, streamlined workflow, thus facilitating the potential harmonization of molecular surveillance of HAV with other enteric viruses. Even challenging sample matrices can be accommodated, making them suitable for broad implementation in clinical and public health laboratories. This innovative approach has significant implications for enhancing multijurisdictional outbreak investigations as well as our understanding of the global diversity and transmission dynamics of HAV.
Collapse
Affiliation(s)
- Sara E. Zufan
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Karolina Mercoulia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason C. Kwong
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kuchinski KS, Loos KD, Suchan DM, Russell JN, Sies AN, Kumakamba C, Muyembe F, Mbala Kingebeni P, Ngay Lukusa I, N’Kawa F, Atibu Losoma J, Makuwa M, Gillis A, LeBreton M, Ayukekbong JA, Lerminiaux NA, Monagin C, Joly DO, Saylors K, Wolfe ND, Rubin EM, Muyembe Tamfum JJ, Prystajecky NA, McIver DJ, Lange CE, Cameron ADS. Targeted genomic sequencing with probe capture for discovery and surveillance of coronaviruses in bats. eLife 2022; 11:e79777. [PMID: 36346652 PMCID: PMC9643004 DOI: 10.7554/elife.79777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - Kara D Loos
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Danae M Suchan
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Jennifer N Russell
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Ashton N Sies
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | | | | | - Placide Mbala Kingebeni
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Institut National de Recherche BiomédicaleKinshasaDemocratic Republic of the Congo
| | | | - Frida N’Kawa
- Metabiota IncKinshasaDemocratic Republic of the Congo
| | | | - Maria Makuwa
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Labyrinth Global Health IncSt. PetersburgUnited States
| | - Amethyst Gillis
- Metabiota IncSan FranciscoUnited States
- Development AlternativesWashingtonUnited States
| | | | | | - Nicole A Lerminiaux
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Corina Monagin
- Metabiota IncSan FranciscoUnited States
- One Health Institute, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Damien O Joly
- MetabiotaNanaimoCanada
- Nyati Health ConsultingNanaimoCanada
| | - Karen Saylors
- Labyrinth Global Health IncSt. PetersburgUnited States
- Metabiota IncSan FranciscoUnited States
| | | | | | | | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - David J McIver
- MetabiotaNanaimoCanada
- Institute for Global Health Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian E Lange
- Labyrinth Global Health IncSt. PetersburgUnited States
- MetabiotaNanaimoCanada
| | - Andrew DS Cameron
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| |
Collapse
|