1
|
Li J, Fang S, Zhang H, Iqbal Z, Shang C, Han W, Huang K, Meng X, Dai M, Lu Z, Guo B, Qu M. Integrative analysis of transcriptome and metabolism reveals functional roles of redox homeostasis in low light and salt combined stress in Leymus chinensis. BMC Genomics 2025; 26:312. [PMID: 40158098 PMCID: PMC11955115 DOI: 10.1186/s12864-025-11526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Salt stress is one of the major limiting factors of Leymus chinensis (named sheepgrass) growth, which accelerates inhibitive effects that are particularly concomitant with low light regimes (LL-Salt). However, little is known about physiological and molecular mechanisms under such LL-Salt in sheepgrass. This study aims to uncover the key reprogrammed metabolic pathways induced by LL-Salt through an integrated analysis of transcriptome and metabolism. Results suggested that the growth of sheepgrass seedlings was dramatically inhibited with a ranging of 8 to 20% reduction in Fv/Fm in LL-Salt combined treatments. Catalase activities were increased by 40% in LL but significantly decreased in salt stress, ranging from 15 to 46%. Both transcriptome and metabolism analysis reveal that carbon metabolism pathways were significantly enriched in the differentially expressed genes with downregulation by both LL and salt stress treatment. Metabolites involved in the photorespiration pathway, including serine and glycolate, were downregulated in LL while upregulated in salt stress treatment, with the same pattern of expression levels of a photorespiration regulatory gene, glycolate oxidase. Collectively, we found that serval antioxidant redox pathways, including photorespiration, GSG/GSSH redox, and ABA signaling, participated in response to LL and salt combined events and highlighted the roles of cellular redox homeostasis in LL-Salt response in sheepgrass.
Collapse
Affiliation(s)
- Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Suyang Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zubair Iqbal
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Weibo Han
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Kai Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xiangshen Meng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Muyuan Dai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhiheng Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Bingnan Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Zhao Y, Li H, Yao Y, Wei Q, Hu T, Li X, Zhu B, Ma H. Combined analysis of proteomics and metabolism reveals critical roles of oxidoreductase activity in mushrooms stimulated by wolfberry and sea buckthorn substrates. Front Nutr 2025; 12:1543240. [PMID: 40170674 PMCID: PMC11958190 DOI: 10.3389/fnut.2025.1543240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Cultivating edible fungi, particularly Lentinula edodes, efficiently transforms agroforestry byproducts into valuable products. However, the mechanism of the promotive effects of those substrates was largely unknown. This study used wolfberry (WB) and sea buckthorn (SBK) substrates to investigate mushroom fruiting bodies' physiological, proteomics, and metabolism profiling. Results Results show that compared to apple wood (AW), the crude protein and fatty acids were substantially enhanced by both WB and SBK treatment. We identified 1409 and 1190 upregulated and downregulated differentially abundant proteins (DAPs) for the SBK versus AW group and observed 929 overlapped DAPs with upregulation patterns. Of these DAPs, carbohydrates and oxidoreductase activity pathways were significantly enriched. Moreover, the enhanced expression of nine genes by WB and SBK was confirmed by qPCR. Metabolism suggests that 66 differentially abundant metabolites overlapped in the list of two comparison groups (WB versus AW and SBK versus AW). Conclusion Collectively, we summarized that both WB and SBK stimulate glucose degradation, enhance the expression of gene-related oxidoreductase activity, and promote protein biosynthesis by coordinating with amino acid metabolism. This study highlights the importance of oxidoreductase activity in promoting nutritional value in mushroom fruiting bodies induced by WB and SBK substrates.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Hongying Li
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Youhua Yao
- Academy of Agriculture and Forestry, Qinghai University, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, China
| | - Qing Wei
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Tilong Hu
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Xia Li
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Boxu Zhu
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| | - Hailing Ma
- College of Ecol-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
3
|
Ding G, Li Z, Iqbal Z, Zhao M, Cui Z, Cao L, Zhou J, Lei L, Luo Y, Bai L, Yang G, Wang R, Li K, Wang X, Liu K, Qu M, Sun S. Identifications of Genes Involved in ABA and MAPK Signaling Pathways Positively Regulating Cold Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:498. [PMID: 40006757 PMCID: PMC11859393 DOI: 10.3390/plants14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Cold stress (CS) significantly impacts rice (Oryza sativa L.) growth during seedling and heading stages. Based on two-year field observations, this study identified two rice lines, L9 (cold stress-sensitive) and LD18 (cold stress-tolerant), showing contrasting CS responses. L9 exhibited a 38% reduction in photosynthetic efficiency, whereas LD18 remained unchanged, correlating with seed rates. Transcriptome analysis identified differentially expressed genes (DEGs) with LD18 showing enriched pathways (carbon fixation, starch/sucrose metabolism, and glutathione metabolism). LD18 displayed dramatically enhanced expression of MAPK-related genes (LOC4342017, LOC9267741, and LOC4342267) and increased ABA signaling genes (LOC4333690, LOC4345611, and LOC4335640) compared with L9 exposed to CS. Results from qPCR confirmed the enhanced expression of the three MAPK-related genes in LD18 with a dramatic reduction in L9 under CS relative to that under CK. We also observed up to 66% reduction in expression levels of the three genes related to the ABA signaling pathway in L9 relative to LD18 under CS. Consistent with the results of photosynthetic efficiency, metabolic analysis suggests pyruvate metabolism, TCA cycle, and carbon metabolism enrichment in LD18 under CS. The study reveals reprogramming of the carbon assimilation metabolic pathways, emphasizing the critical roles of the key DEGs involved in ABA and MAPK signaling pathways in positive regulation of LD18 response to CS, offering the foundation toward cold tolerance breeding through targeted gene editing.
Collapse
Affiliation(s)
- Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Zhugang Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Zubair Iqbal
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Minghui Zhao
- Design and Germplasm Innovation/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110161, China; (M.Z.); (Z.C.)
| | - Zhibo Cui
- Design and Germplasm Innovation/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110161, China; (M.Z.); (Z.C.)
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Lei Lei
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
| | - Rongsheng Wang
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Kun Li
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| |
Collapse
|
4
|
Wang Y, Zhang Y, Qiao H, Zheng Y, Hou X, Shi L. An integrated transcriptome and physiological analysis of nitrogen use efficiency in rice ( Oryza sativa L. ssp. indica) under drought stress. Front Genet 2024; 15:1483113. [PMID: 39553474 PMCID: PMC11564168 DOI: 10.3389/fgene.2024.1483113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Nitrogen is a critical nutrient vital for crop growth. However, our current understanding of nitrogen use efficiency (NUE) under drought remains inadequate. To delve into the molecular mechanisms underlying NUE under drought, a transcriptome and physiological co-expression analysis was performed in rice, which is particularly sensitive to drought. We conducted a pot experiment using rice grown under normal irrigation, mild drought stress, and severe drought stress. Compared to the normal treatment, drought stress led to a significant reduction in NUE across growth stages, with decreases ranging from 2.18% to 31.67%. Totals of 4,424 and 2,452 genes were identified as NUE-related DEGs that showed differential expressions (DEGs) and significantly correlated with NUE (NUE-related) under drought in the vegetative and reproductive stages, respectively. Interestingly, five genes involved in nitrogen metabolism were found in the overlapped genes of these two sets. Furthermore, the two sets of NUE-related DEGs were enriched in glyoxylate and dicarboxylate metabolism, as well as carbon fixation in photosynthetic organisms. Several genes in these two pathways were identified as hub genes in the two sets of NUE-related DEGs. This study offers new insights into the molecular mechanism of rice NUE under drought in agricultural practices and provides potential genes for breeding drought-resistant crops with high NUE.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China
| | - Yufan Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Han Qiao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Liu S, Xu Z, Essemine J, Liu Y, Liu C, Zhang F, Iqbal Z, Qu M. GWAS unravels acid phosphatase ACP2 as a photosynthesis regulator under phosphate starvation conditions through modulating serine metabolism in rice. PLANT COMMUNICATIONS 2024; 5:100885. [PMID: 38504521 PMCID: PMC11287135 DOI: 10.1016/j.xplc.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/09/2023] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
Inorganic phosphorus (Pi) deficiency significantly impacts plant growth, development, and photosynthetic efficiency. This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient (Pi+) and Pi-starvation (Pi-) conditions in the field to assess photosynthetic phosphorus use efficiency (PPUE), defined as the ratio of AsatPi- to AsatPi+. A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene (ACP2) that responds strongly to phosphate availability. Overexpression and knockout of ACP2 led to a 67% increase and 32% decrease in PPUE, respectively, compared with wild type. Introduction of an elite allele A, by substituting the v5 SNP G with A, resulted in an 18% increase in PPUE in gene-edited ACP2 rice lines. The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression, resulting in an 11% increase in PPUE. Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine. In addition, serine levels increased significantly in the ACP2v8G-overexpression line, along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway. Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions. We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.
Collapse
Affiliation(s)
- Sushuang Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Department of Life Sciences and Health, Huzhou College, Huzhou 313000, China
| | - Zhan Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jemaa Essemine
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yanmin Liu
- Department of Life Sciences and Health, Huzhou College, Huzhou 313000, China
| | - Chundong Liu
- Department of Life Sciences and Health, Huzhou College, Huzhou 313000, China
| | - Feixue Zhang
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Zubair Iqbal
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Ku W, Su Y, Peng X, Wang R, Li H, Xiao L. Comparative Transcriptome Analysis Reveals Inhibitory Roles of Strigolactone in Axillary Bud Outgrowth in Ratoon Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:899. [PMID: 38592943 PMCID: PMC10975295 DOI: 10.3390/plants13060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Axillary bud outgrowth, a key factor in ratoon rice yield formation, is regulated by several phytohormone signals. The regulatory mechanism of key genes underlying ratoon buds in response to phytohormones in ratoon rice has been less reported. In this study, GR24 (a strigolactone analogue) was used to analyze the ratooning characteristics in rice cultivar Huanghuazhan (HHZ). Results show that the elongation of the axillary buds in the first seasonal rice was significantly inhibited and the ratoon rate was reduced at most by up to 40% with GR24 treatment. Compared with the control, a significant reduction in the content of auxin and cytokinin in the second bud from the upper spike could be detected after GR24 treatment, especially 3 days after treatment. Transcriptome analysis suggested that there were at least 742 and 2877 differentially expressed genes (DEGs) within 6 h of GR24 treatment and 12 h of GR24 treatment, respectively. Further bioinformatics analysis revealed that GR24 treatment had a significant effect on the homeostasis and signal transduction of cytokinin and auxin. It is noteworthy that the gene expression levels of OsCKX1, OsCKX2, OsGH3.6, and OsGH3.8, which are involved in cytokinin or auxin metabolism, were enhanced by the 12 h GR24 treatment. Taken overall, this study showed the gene regulatory network of auxin and cytokinin homeostasis to be regulated by strigolactone in the axillary bud outgrowth of ratoon rice, which highlights the importance of these biological pathways in the regulation of axillary bud outgrowth in ratoon rice and would provide theoretical support for the molecular breeding of ratoon rice.
Collapse
Affiliation(s)
- Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (W.K.); (Y.S.); (X.P.); (R.W.)
| |
Collapse
|
7
|
Li H, Gui Y, Zhu K, Wei J, Zhang R, Yang R, Tang L, Zhou H, Liu X. Comparative transcriptomic analyses of two sugarcane Saccharum L. cultivars differing in drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1243664. [PMID: 37885666 PMCID: PMC10598656 DOI: 10.3389/fpls.2023.1243664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Sugarcane (Saccharum spp.) is an important cash crop, and drought is an important factors limiting its yield. To study the drought resistance mechanism of sugarcane, the transcriptomes of two sugarcane varieties with different levels of drought resistance were compared under different water shortage levels. The results showed that the transcriptomes of the two varieties were significantly different. The differentially expressed genes were enriched in starch and sucrose metabolism, linoleic acid metabolism, glycolysis/gluconeogenesis, and glyoxylate and dicarboxylate metabolic pathways. Unique trend genes of the variety with strong drought resistance (F172) were significantly enriched in photosynthesis, mitogen-activated protein kinases signaling pathway, biosynthesis of various plant secondary metabolites, and cyanoamino acid metabolism pathways. Weighted correlation network analysis indicated that the blue4 and plum1 modules correlated with drought conditions, whereas the tan and salmon4 modules correlated with variety. The unique trend genes expressed in F172 and mapped to the blue4 module were enriched in photosynthesis, purine metabolism, starch and sucrose metabolism, beta-alanine metabolism, photosynthesis-antenna proteins, and plant hormone signal transduction pathways. The expression of genes involved in the photosynthesis-antenna protein and photosynthesis pathways decreased in response to water deficit, indicating that reducing photosynthesis might be a means for sugarcane to respond to drought stress. The results of this study provide insights into drought resistance mechanisms in plants, and the related genes and metabolic pathways identified may be helpful for sugarcane breeding in the future.
Collapse
Affiliation(s)
- Haibi Li
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Chongzuo, China
| | - Yiyun Gui
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kai Zhu
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jinju Wei
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ronghua Zhang
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rongzhong Yang
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liqiu Tang
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Chongzuo, China
| | - Hui Zhou
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xihui Liu
- Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
8
|
Fu J, Li L, Wang S, Yu N, Shan H, Shi Z, Li F, Zhong X. Effect of gibberellic acid on photosynthesis and oxidative stress response in maize under weak light conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1128780. [PMID: 36875610 PMCID: PMC9978513 DOI: 10.3389/fpls.2023.1128780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Gibberellin (GA) is an important endogenous hormone involved in plant responses to abiotic stresses. Experiments were conducted at the Research and Education Center of Agronomy, Shenyang Agricultural University (Shenyang, China) in 2021.We used a pair of near-isogenic inbred maize lines comprising, SN98A (light-sensitive inbred line) and SN98B (light-insensitive inbred line) to study the effects of exogenous gibberellin A3 (GA3) application on different light-sensitive inbred lines under weak light conditions. The concentration of GA3 was selected as 20, 40 and 60 mg L-1. After shade treatment, the photosynthetic physiological indexes of SN98A were always lower than SN98B, and the net photosynthetic rate of SN98A was 10.12% lower than SN98B on the 20th day after shade treatment. GA3 treatments significantly reduced the barren stalk ratios in SN98A and improved its seed setting rates by increasing the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), photosynthetic pigment contents, photochemical efficiency of photosystem II (PS II) (Fv/Fm), photochemical quenching coefficient (qP), effective quantum yield of PSII photochemistry (ΦPSII), and antioxidant enzyme activities, where the most effective treatment was 60 mg L-1GA3. Compared with CK group, the seed setting rate increased by 33.87%. GA3 treatment also regulated the metabolism of reactive oxygen species (ROS) and reduced the superoxide anion ( O 2 - ) production rate, H2O2 content, and malondialdehyde content. The superoxide anion ( O 2 - ) production rate, H2O2 content and malondialdehyde content of SN98A sprayed with 60 mg L-1 GA3 decreased by 17.32%,10.44% and 50.33% compared with CK group, respectively. Compared with the control, GA3 treatment significantly (P < 0.05) increased the expression levels of APX and GR in SN98A, and APX, Fe-SOD, and GR in SN98B. Weak light stress decreased the expression of GA20ox2, which was related to gibberellin synthesis, and the endogenous gibberellin synthesis of SN98A. Weak light stress accelerated leaf senescence, and exogenous GA3 application inhibited the ROS levels in the leaves and maintained normal physiological functions in the leaves. These results indicate that exogenous GA3 enhances the adaptability of plants to low light stress by regulating photosynthesis, ROS metabolism and protection mechanisms, as well as the expression of key genes, which may be an economical and environmentally friendly method to solve the low light stress problem in maize production.
Collapse
Affiliation(s)
- Jianjun Fu
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Linlin Li
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuang Wang
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Na Yu
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Hong Shan
- Liaoning Dongya Seed Co., Ltd., Shenyang, China
| | - Zhensheng Shi
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Fenghai Li
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Xuemei Zhong
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|