1
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
2
|
Lu Q, Li H, Liu H, Xu Z, Saikaly PE, Zhang W. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater. ENVIRONMENTAL RESEARCH 2024; 257:119329. [PMID: 38851372 DOI: 10.1016/j.envres.2024.119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Wang G, Huang L, Zhuang S, Han F, Huang Q, Hao M, Lin G, Chen L, Shen B, Li F, Li X, Chen C, Gao Y, Mock T, Liang J. Resting cell formation in the marine diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2024; 243:1347-1360. [PMID: 38402560 DOI: 10.1111/nph.19646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.
Collapse
Affiliation(s)
- Guangning Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shanshan Zhuang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fang Han
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qianqian Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengyuan Hao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guifang Lin
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Longnan Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Biying Shen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuesong Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
4
|
von Dassow P. Some fall to sleep slowly: cell biophysics and metabolism of quiescence in diatom resting cells. THE NEW PHYTOLOGIST 2024; 243:1284-1286. [PMID: 38650314 DOI: 10.1111/nph.19768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This article is a Commentary on Wang et al. (2024), 243: 1347–1360.
Collapse
Affiliation(s)
- Peter von Dassow
- Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, 8331150, Chile
- Millennium Institute of Oceanography, Universidad de Concepción, Barrio Universitario S/N, Concepción, Región Biobío, 4070112, Chile
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| |
Collapse
|
5
|
Stenow R, Robertson EK, Kourtchenko O, Whitehouse MJ, Pinder MIM, Benvenuto G, Töpel M, Godhe A, Ploug H. Resting cells of Skeletonema marinoi assimilate organic compounds and respire by dissimilatory nitrate reduction to ammonium in dark, anoxic conditions. Environ Microbiol 2024; 26:e16625. [PMID: 38653479 DOI: 10.1111/1462-2920.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Diatoms can survive long periods in dark, anoxic sediments by forming resting spores or resting cells. These have been considered dormant until recently when resting cells of Skeletonema marinoi were shown to assimilate nitrate and ammonium from the ambient environment in dark, anoxic conditions. Here, we show that resting cells of S. marinoi can also perform dissimilatory nitrate reduction to ammonium (DNRA), in dark, anoxic conditions. Transmission electron microscope analyses showed that chloroplasts were compacted, and few large mitochondria had visible cristae within resting cells. Using secondary ion mass spectrometry and isotope ratio mass spectrometry combined with stable isotopic tracers, we measured assimilatory and dissimilatory processes carried out by resting cells of S. marinoi under dark, anoxic conditions. Nitrate was both respired by DNRA and assimilated into biomass by resting cells. Cells assimilated nitrogen from urea and carbon from acetate, both of which are sources of dissolved organic matter produced in sediments. Carbon and nitrogen assimilation rates corresponded to turnover rates of cellular carbon and nitrogen content ranging between 469 and 10,000 years. Hence, diatom resting cells can sustain their cells in dark, anoxic sediments by slowly assimilating and respiring substrates from the ambient environment.
Collapse
Affiliation(s)
- Rickard Stenow
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| | | | - Olga Kourtchenko
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| | | | - Matthew I M Pinder
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| | | | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
- IVL-Swedish Environmental Research Institute, Gothenburg, SE, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| |
Collapse
|
6
|
Stenow R, Robertson EK, Whitehouse MJ, Ploug H. Single cell dynamics and nitrogen transformations in the chain forming diatom Chaetoceros affinis. THE ISME JOURNAL 2023; 17:2070-2078. [PMID: 37723340 PMCID: PMC10579250 DOI: 10.1038/s41396-023-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Colony formation in phytoplankton is often considered a disadvantage during nutrient limitation in aquatic systems. Using stable isotopic tracers combined with secondary ion mass spectrometry (SIMS), we unravel cell-specific activities of a chain-forming diatom and interactions with attached bacteria. The uptake of 13C-bicarbonate and15N-nitrate or 15N-ammonium was studied in Chaetoceros affinis during the stationary growth phase. Low cell-to-cell variance of 13C-bicarbonate and 15N-nitrate assimilation within diatom chains prevailed during the early stationary phase. Up to 5% of freshly assimilated 13C and 15N was detected in attached bacteria within 12 h and supported bacterial C- and N-growth rates up to 0.026 h-1. During the mid-stationary phase, diatom chain-length decreased and 13C and 15N-nitrate assimilation was significantly higher in solitary cells as compared to that in chain cells. During the late stationary phase, nitrate assimilation ceased and ammonium assimilation balanced C fixation. At this stage, we observed highly active cells neighboring inactive cells within the same chain. In N-limited regimes, bacterial remineralization of N and the short diffusion distance between neighbors in chains may support surviving cells. This combination of "microbial gardening" and nutrient transfer within diatom chains represents a strategy which challenges current paradigms of nutrient fluxes in plankton communities.
Collapse
Affiliation(s)
- Rickard Stenow
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden.
| | - Elizabeth K Robertson
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden
| | - Martin J Whitehouse
- Swedish Museum of Natural History, Box 50 007, SE, 104 05, Stockholm, Sweden
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden
| |
Collapse
|