1
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Yan Y, Chen Q, Xiang Z, Wang Q, Long Z, Liang H, Ameer S, Zou J, Dai X, Zhu Z. Amino acid metabolomics and machine learning-driven assessment of future liver remnant growth after hepatectomy in livers of various backgrounds. J Pharm Biomed Anal 2024; 249:116369. [PMID: 39047463 DOI: 10.1016/j.jpba.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Accurate assessment of future liver remnant growth after partial hepatectomy (PH) in patients with different liver backgrounds is a pressing clinical issue. Amino acid (AA) metabolism plays a crucial role in liver regeneration. In this study, we combined metabolomics and machine learning (ML) to develop a generalized future liver remnant assessment model for multiple liver backgrounds. The liver index was calculated at 0, 6, 24, 48, 72 and 168 h after 70 % PH in healthy mice and mice with nonalcoholic steatohepatitis or liver fibrosis. The serum levels of 39 amino acids (AAs) were measured using UPLC-MS/MS. The dataset was randomly divided into training and testing sets at a 2:1 ratio, and orthogonal partial least squares regression (OPLS) and minimally biased variable selection in R (MUVR) were used to select a metabolite signature of AAs. To assess liver remnant growth, nine ML models were built, and evaluated using the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The post-Pareto technique for order preference by similarity to the ideal solution (TOPSIS) was employed for ranking the ML algorithms, and a stacking technique was utilized to establish consensus among the superior algorithms. Compared with those of OPLS, the signature AAs set identified by MUVR (Thr, Arg, EtN, Phe, Asa, 3MHis, Abu, Asp, Tyr, Leu, Ser, and bAib) are more concise. Post-Pareto TOPSIS ranking demonstrated that the majority of ML algorithm in combinations with MUVR outperformed those with OPLS. The established SVM-KNN consensus model performed best, with an R2 of 0.79, an MAE of 0.0029, and an RMSE of 0.0035 for the testing set. This study identified a metabolite signature of 12 AAs and constructed an SVM-KNN consensus model to assess future liver remnant growth after PH in mice with different liver backgrounds. Our preclinical study is anticipated to establish an alternative and generalized assessment method for liver regeneration.
Collapse
Affiliation(s)
- Yuqing Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianping Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiqiang Xiang
- Department of Hepatobiliary Surgery, Hunan University of Medicine General Hospital, Huaihua, Hunan, China
| | - Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Sajid Ameer
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China.
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
4
|
Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci 2024; 353:122924. [PMID: 39038511 DOI: 10.1016/j.lfs.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The liver is considered unique in its enormous capacity for regeneration and self-repair. In contrast to other regenerative organs (i.e., skin, skeletal muscle, and intestine), whether the adult liver contains a defined department of stem cells is still controversial. In order to compensate for the massive loss of hepatocytes following liver injury, the liver processes a precisely controlled transcriptional reprogram that can trigger cell proliferation and cell-fate switch. Epigenetic events are thought to regulate the organization of chromatin architecture and gene transcription during the liver regenerative process. In this review, we will summarize how changes to the chromatin by epigenetic modifiers are translated into cell fate transitions to restore liver homeostasis during liver regeneration.
Collapse
Affiliation(s)
- Zilong Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China.
| | - Xinyue Sun
- Department of Pharmacology, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wei G, Tang Y, Dai L, An T, Li Y, Wang Y, Wang L, Wang X, Zhang J. Identification and functional prediction of miRNAs that regulate ROS levels in dielectric barrier discharge plasma-treated boar spermatozoa. Theriogenology 2024; 226:308-318. [PMID: 38959841 DOI: 10.1016/j.theriogenology.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.
Collapse
Affiliation(s)
- Gege Wei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yunping Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Li Dai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan, 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wang
- Sichuan Animal Husbandry Station, Chengdu, 610041, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
6
|
Yan Y, Chen Q, Dai X, Xiang Z, Long Z, Wu Y, Jiang H, Zou J, Wang M, Zhu Z. Amino acid metabolomics and machine learning for assessment of post-hepatectomy liver regeneration. Front Pharmacol 2024; 15:1345099. [PMID: 38855741 PMCID: PMC11157015 DOI: 10.3389/fphar.2024.1345099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Amino acid (AA) metabolism plays a vital role in liver regeneration. However, its measuring utility for post-hepatectomy liver regeneration under different conditions remains unclear. We aimed to combine machine learning (ML) models with AA metabolomics to assess liver regeneration in health and non-alcoholic steatohepatitis (NASH). Methods The liver index (liver weight/body weight) was calculated following 70% hepatectomy in healthy and NASH mice. The serum levels of 39 amino acids were measured using ultra-high performance liquid chromatography-tandem mass spectrometry analysis. We used orthogonal partial least squares discriminant analysis to determine differential AAs and disturbed metabolic pathways during liver regeneration. The SHapley Additive exPlanations algorithm was performed to identify potential AA signatures, and five ML models including least absolute shrinkage and selection operator, random forest, K-nearest neighbor (KNN), support vector regression, and extreme gradient boosting were utilized to assess the liver index. Results Eleven and twenty-two differential AAs were identified in the healthy and NASH groups, respectively. Among these metabolites, arginine and proline metabolism were commonly disturbed metabolic pathways related to liver regeneration in both groups. Five AA signatures were identified, including hydroxylysine, L-serine, 3-methylhistidine, L-tyrosine, and homocitrulline in healthy group, and L-arginine, 2-aminobutyric acid, sarcosine, beta-alanine, and L-cysteine in NASH group. The KNN model demonstrated the best evaluation performance with mean absolute error, root mean square error, and coefficient of determination values of 0.0037, 0.0047, 0.79 and 0.0028, 0.0034, 0.71 for the healthy and NASH groups, respectively. Conclusion The KNN model based on five AA signatures performed best, which suggests that it may be a valuable tool for assessing post-hepatectomy liver regeneration in health and NASH.
Collapse
Affiliation(s)
- Yuqing Yan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianping Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hui Jiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mu Wang
- The NanHua Affiliated Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Liu D, Dong Y, Gao J, Wu Z, Zhang L, Wang B. Role of the circular RNA regulatory network in the pathogenesis of biliary atresia. Exp Ther Med 2024; 27:95. [PMID: 38313582 PMCID: PMC10831818 DOI: 10.3892/etm.2024.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024] Open
Abstract
Circular RNAs (circRNAs) serve an essential role in the occurrence and development of cholangiocarcinoma, but the expression and function of circRNA in biliary atresia (BA) is not clear. In the present study, circRNA expression profiles were investigated in the liver tissues of patients with BA as well as in the choledochal cyst (CC) tissues of control patients using RNA sequencing. A total of 78 differentially expressed circRNAs (DECs) were identified between the BA and CC tissues. The expression levels of eight circRNAs (hsa_circ_0006137, hsa_circ_0079422, hsa_circ_0007375, hsa_circ_0005597, hsa_circ_0006961, hsa_circ_0081171, hsa_circ_0084665 and hsa_circ_0075828) in the liver tissues of the BA group and control group were measured using reverse transcription-quantitative polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the identified DECs are involved in a variety of biological processes, including apoptosis and metabolism. In addition, based on the GO and KEGG pathway enrichment analyses, it was revealed that target genes that can be affected by circRNAs regulatory network were enriched in the TGF-β signaling pathway, EGFR tyrosine kinase inhibitor resistance pathway and transcription factor regulation pathway as well as other pathways that may be associated with the pathogenesis of BA. The present study revealed that circRNAs are potentially implicated in the pathogenesis of BA and could help to find promising targets and biomarkers for BA.
Collapse
Affiliation(s)
- Dong Liu
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jiahui Gao
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhouguang Wu
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Lihui Zhang
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
8
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Kobara H, Ono M, Himoto T, Masaki T. MicroRNAs and Nonalcoholic Steatohepatitis: A Review. Int J Mol Sci 2023; 24:14482. [PMID: 37833930 PMCID: PMC10572537 DOI: 10.3390/ijms241914482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome caused by fat deposition in hepatocytes. Patients with nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD with severe fibrosis, are at high risk for liver-related complications, including hepatocellular carcinoma (HCC). However, the mechanism of progression from simple fat deposition to NASH is complex, and previous reports have linked NAFLD to gut microbiota, bile acids, immunity, adipokines, oxidative stress, and genetic or epigenetic factors. NASH-related liver injury involves multiple cell types, and intercellular signaling is thought to be mediated by extracellular vesicles. MicroRNAs (miRNAs) are short, noncoding RNAs that play important roles as post-transcriptional regulators of gene expression and have been implicated in the pathogenesis of various diseases. Recently, many reports have implicated microRNAs in the pathogenesis of NALFD/NASH, suggesting that exosomal miRNAs are potential non-invasive and sensitive biomarkers and that the microRNAs involved in the mechanism of the progression of NASH may be potential therapeutic target molecules. We are interested in which miRNAs are involved in the pathogenesis of NASH and which are potential target molecules for therapy. We summarize targeted miRNAs associated with the etiology and progression of NASH and discuss each miRNA in terms of its pathophysiology, potential therapeutic applications, and efficacy as a NASH biomarker.
Collapse
Affiliation(s)
| | | | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Japan; (A.M.); (K.O.); (K.F.); (J.T.); (H.K.); (M.O.); (T.H.); (T.M.)
| | | | | | | | | | | | | |
Collapse
|